温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

大数据实时计算引擎 Flink 实战与性能优化

发布时间:2020-07-12 00:36:04 来源:网络 阅读:360 作者:13157330443 栏目:大数据

专栏亮点

  • 全网首个使用最新版本 Flink 1.9 进行内容讲解(该版本更新很大,架构功能都有更新),领跑于目前市面上常见的 Flink 1.7 版本的教学课程。

  • 包含大量的实战案例和代码去讲解原理,有助于读者一边学习一边敲代码,达到更快,更深刻的学习境界。目前市面上的书籍没有任何实战的内容,还只是讲解纯概念和翻译官网。

  • 在专栏高级篇中,根据 Flink 常见的项目问题提供了排查和解决的思维方法,并通过这些问题探究了为什么会出现这类问题。

  • 在实战和案例篇,围绕大厂公司的经典需求进行分析,包括架构设计、每个环节的操作、代码实现都有一一讲解。

为什么要学习 Flink?

随着大数据的不断发展,对数据的及时性要求越来越高,实时场景需求也变得越来越多,主要分下面几大类:

大数据实时计算引擎 Flink 实战与性能优化

为了满足这些实时场景的需求,衍生出不少计算引擎框架。现有市面上的大数据计算引擎的对比如下图所示:

大数据实时计算引擎 Flink 实战与性能优化

可以发现无论从 Flink 的架构设计上,还是从其功能完整性和易用性来讲都是领先的,再加上 Flink 是阿里巴巴主推的计算引擎框架,所以从去年开始就越来越火了!

目前,阿里巴巴、腾讯、美团、华为、滴滴出行、携程、饿了么、爱奇艺、有赞、唯品会等大厂都已经将 Flink 实践于公司大型项目中,带起了一波 Flink 风潮,势必也会让 Flink 人才市场产生供不应求的招聘现象。

专栏内容


向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI