在分布式系统中,缓存是一种提高数据访问速度的有效手段。Go语言中的sync.Map
是一个内置的并发安全的map,可以用来实现分布式缓存。为了实现缓存淘汰算法,我们可以使用以下几种策略:
type LRUCache struct {
capacity int
cache sync.Map
lruList *list.List
}
type entry struct {
key string
value interface{}
index int
}
func NewLRUCache(capacity int) *LRUCache {
return &LRUCache{
capacity: capacity,
lruList: list.New(),
}
}
func (c *LRUCache) Get(key string) (interface{}, bool) {
if value, ok := c.cache.Load(key); ok {
c.lruList.MoveToFront(c.lruList.Find(key))
return value, true
}
return nil, false
}
func (c *LRUCache) Put(key string, value interface{}) {
if c.capacity <= 0 {
return
}
if value, ok := c.cache.LoadOrStore(key, value); ok {
c.lruList.MoveToFront(c.lruList.Find(key))
} else {
if c.lruList.Len() >= c.capacity {
last := c.lruList.Back()
delete(c.cache, last.Value.(*entry).key)
c.lruList.Remove(last)
}
newEntry := &entry{key: key, value: value}
c.lruList.PushFront(newEntry)
c.cache.Store(key, newEntry)
}
}
type TTLCache struct {
capacity int
cache sync.Map
ttlMap map[string]int64
}
func NewTTLCache(capacity int) *TTLCache {
return &TTLCache{
capacity: capacity,
ttlMap: make(map[string]int64),
}
}
func (c *TTLCache) Get(key string) (interface{}, bool) {
if value, ok := c.cache.Load(key); ok {
if time.Since(time.Unix(value.(*entry).expiration, 0)) <= time.Duration(value.(*entry).ttl)*time.Second {
c.cache.Store(key, value)
c.lruList.MoveToFront(c.lruList.Find(key))
return value, true
}
}
return nil, false
}
func (c *TTLCache) Put(key string, value interface{}, ttl int) {
if c.capacity <= 0 {
return
}
expiration := time.Now().Add(time.Duration(ttl) * time.Second).Unix()
if value, ok := c.cache.LoadOrStore(key, &entry{value: value, expiration: expiration}); ok {
c.lruList.MoveToFront(c.lruList.Find(key))
} else {
if c.lruList.Len() >= c.capacity {
last := c.lruList.Back()
delete(c.cache, last.Value.(*entry).key)
c.lruList.Remove(last)
}
newEntry := &entry{value: value, expiration: expiration}
c.lruList.PushFront(newEntry)
c.cache.Store(key, newEntry)
}
c.ttlMap[key] = expiration
}
type LFUCache struct {
capacity int
cache sync.Map
freqMap map[string]int
minFreq int
}
func NewLFUCache(capacity int) *LFUCache {
return &LFUCache{
capacity: capacity,
freqMap: make(map[string]int),
minFreq: 0,
}
}
func (c *LFUCache) Get(key string) (interface{}, bool) {
if value, ok := c.cache.Load(key); ok {
c.increaseFreq(key)
return value, true
}
return nil, false
}
func (c *LFUCache) Put(key string, value interface{}) {
if c.capacity <= 0 {
return
}
if _, ok := c.cache.Load(key); ok {
c.cache.Store(key, value)
c.increaseFreq(key)
} else {
if c.cache.Len() >= c.capacity {
minFreqKey := ""
minFreq := int(^uint(0) >> 1) // Max int value
for k, v := range c.freqMap {
if v < minFreq {
minFreq = v
minFreqKey = k
}
}
delete(c.cache, minFreqKey)
delete(c.freqMap, minFreqKey)
}
c.cache.Store(key, value)
c.freqMap[key] = 1
if c.minFreq == 0 {
c.minFreq = 1
}
}
}
func (c *LFUCache) increaseFreq(key string) {
freq := c.freqMap[key]
delete(c.freqMap, key)
c.freqMap[key] = freq + 1
if freq == c.minFreq {
c.minFreq++
}
}
这些缓存淘汰算法可以根据具体需求进行选择和实现。在实际应用中,还可以根据业务特点对缓存策略进行调整和优化。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。