在C++中,聚类算法可以用于数据压缩,因为它们可以将相似的数据点分组在一起,从而减少数据集中的冗余。以下是一个简单的例子,展示了如何使用K-means聚类算法进行数据压缩和解压:
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
#include <algorithm>
// K-means聚类算法
std::vector<std::vector<double>> kMeans(const std::vector<std::vector<double>>& data, int k, int maxIterations = 100) {
int n = data.size();
std::vector<int> labels(n, -1);
std::vector<std::vector<double>> centroids(k, std::vector<double>(data[0].size(), 0));
std::vector<std::vector<double>> clusterCentroids(k, std::vector<double>(data[0].size(), 0));
// 随机初始化质心
std::random_device rd;
std::mt19937 gen(rd());
std::shuffle(data.begin(), data.end(), gen);
for (int i = 0; i < k; ++i) {
centroids[i] = data[i];
}
for (int i = 0; i < maxIterations; ++i) {
std::vector<std::vector<double>> clusters(k);
// 将数据点分配到最近的质心
for (int j = 0; j < n; ++j) {
double minDist = std::numeric_limits<double>::max();
int minIndex = -1;
for (int l = 0; l < k; ++l) {
double dist = 0;
for (int m = 0; m < data[j].size(); ++m) {
dist += pow(data[j][m] - centroids[l][m], 2);
}
if (dist < minDist) {
minDist = dist;
minIndex = l;
}
}
labels[j] = minIndex;
clusters[minIndex].push_back(data[j]);
}
// 更新质心
for (int j = 0; j < k; ++j) {
double sum = 0;
for (const auto& point : clusters[j]) {
for (int m = 0; m < point.size(); ++m) {
sum += point[m];
}
}
for (int m = 0; m < point.size(); ++m) {
centroids[j][m] = sum / clusters[j].size();
}
}
}
// 计算最终的质心
std::vector<std::vector<double>> finalCentroids;
for (int i = 0; i < k; ++i) {
if (!clusters[i].empty()) {
double sum = 0;
for (const auto& point : clusters[i]) {
for (int m = 0; m < point.size(); ++m) {
sum += point[m];
}
}
for (int m = 0; m < point.size(); ++m) {
finalCentroids[i][m] = sum / clusters[i].size();
}
}
}
return finalCentroids;
}
// 数据压缩
std::vector<std::vector<double>> compressData(const std::vector<std::vector<double>>& data, int k) {
std::vector<std::vector<double>> centroids = kMeans(data, k);
std::vector<std::vector<double>> compressedData;
for (const auto& point : data) {
double minDist = std::numeric_limits<double>::max();
int minIndex = -1;
for (int i = 0; i < centroids.size(); ++i) {
double dist = 0;
for (int m = 0; m < point.size(); ++m) {
dist += pow(point[m] - centroids[i][m], 2);
}
if (dist < minDist) {
minDist = dist;
minIndex = i;
}
}
compressedData.push_back(centroids[minIndex]);
}
return compressedData;
}
// 数据解压
std::vector<std::vector<double>> decompressData(const std::vector<std::vector<double>>& compressedData, const std::vector<std::vector<double>>& originalData, int k) {
std::vector<std::vector<double>> centroids = kMeans(originalData, k);
std::vector<std::vector<double>> decompressedData;
for (const auto& point : compressedData) {
double minDist = std::numeric_limits<double>::max();
int minIndex = -1;
for (int i = 0; i < centroids.size(); ++i) {
double dist = 0;
for (int m = 0; m < point.size(); ++m) {
dist += pow(point[m] - centroids[i][m], 2);
}
if (dist < minDist) {
minDist = dist;
minIndex = i;
}
}
decompressedData.push_back(originalData[minIndex]);
}
return decompressedData;
}
int main() {
std::vector<std::vector<double>> data = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}};
int k = 2;
// 数据压缩
std::vector<std::vector<double>> compressedData = compressData(data, k);
std::cout << "Compressed data:" << std::endl;
for (const auto& point : compressedData) {
std::cout << "[" << point[0] << ", " << point[1] << "]" << std::endl;
}
// 数据解压
std::vector<std::vector<double>> decompressedData = decompressData(compressedData, data, k);
std::cout << "Decompressed data:" << std::endl;
for (const auto& point : decompressedData) {
std::cout << "[" << point[0] << ", " << point[1] << "]" << std::endl;
}
return 0;
}
这个例子中,我们首先使用K-means聚类算法对数据进行压缩,将相似的数据点分组在一起。然后,我们可以使用相同的算法对压缩后的数据进行解压,恢复原始数据。请注意,这个例子仅用于演示目的,实际应用中可能需要根据具体需求进行调整。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。