在C++中,聚类算法和网格搜索是机器学习中两个重要的概念
聚类是一种无监督学习方法,用于将数据集中的样本分成不同的组或簇。常用的C++聚类算法有K-means、DBSCAN等。以下是K-means算法的简单实现:
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
using namespace std;
struct Point {
double x, y;
};
double distance(const Point& a, const Point& b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
vector<Point> kmeans(const vector<Point>& points, int k, int max_iterations = 100) {
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<> dis(0, points.size() - 1);
vector<Point> centroids(k);
vector<int> labels(points.size(), -1);
for (int i = 0; i < max_iterations; ++i) {
vector<Point> clusters[k];
for (int j = 0; j < points.size(); ++j) {
int closest_centroid = dis(gen);
clusters[closest_centroid].push_back(points[j]);
labels[j] = closest_centroid;
}
bool converged = true;
for (int j = 0; j < k; ++j) {
if (clusters[j].size() == 0) {
// Find the largest cluster and take its centroid as the new centroid
int max_cluster_index = 0;
for (int l = 1; l < k; ++l) {
if (clusters[l].size() > clusters[max_cluster_index].size()) {
max_cluster_index = l;
}
}
centroids[j] = clusters[max_cluster_index][0];
clusters[max_cluster_index].clear();
} else {
Point new_centroid = {0, 0};
for (const auto& point : clusters[j]) {
new_centroid.x += point.x;
new_centroid.y += point.y;
}
new_centroid.x /= clusters[j].size();
new_centroid.y /= clusters[j].size();
centroids[j] = new_centroid;
}
for (int j = 0; j < points.size(); ++j) {
double min_distance = DBL_MAX;
int closest_centroid = -1;
for (int l = 0; l < k; ++l) {
double dist = distance(points[j], centroids[l]);
if (dist < min_distance) {
min_distance = dist;
closest_centroid = l;
}
}
if (closest_centroid != labels[j]) {
converged = false;
break;
}
}
if (!converged) break;
}
if (converged) break;
}
return centroids;
}
网格搜索是一种参数优化方法,用于在给定的参数空间中搜索最佳参数组合。常用的C++网格搜索库有GridSearchCV
(基于Scikit-learn)和mlpack
等。以下是使用Scikit-learn的GridSearchCV
进行参数优化的示例:
#include <iostream>
#include <vector>
#include <algorithm>
#include <random>
#include <chrono>
#include <sklearn/model_selection/grid_search.hpp>
#include <sklearn/svm/svc.hpp>
using namespace std;
using namespace sklearn::model_selection;
using namespace sklearn::svm;
int main() {
// 生成随机数据集
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<> dis(0, 100);
vector<vector<double>> X(100, vector<double>(2));
vector<double> y(100);
for (int i = 0; i < 100; ++i) {
X[i][0] = dis(gen);
X[i][1] = dis(gen);
y[i] = dis(gen) % 2;
}
// 定义参数网格
param_grid grid = {{0, 1}, {1, 2}, {2, 3}};
// 创建SVM分类器
SVC classifier;
// 创建网格搜索对象
GridSearchCV grid_search(classifier, grid, cv::evaluate_classification, vector<double>());
// 开始网格搜索
auto start = chrono::high_resolution_clock::now();
grid_search.fit(X, y);
auto end = chrono::high_resolution_clock::now();
// 输出最佳参数组合和对应的得分
cout << "Best parameters: " << grid_search.best_params_ << endl;
cout << "Best score: " << grid_search.best_score_ << endl;
cout << "Time taken: " << chrono::duration<double, milli>(end - start).count() << " ms" << endl;
return 0;
}
这个示例使用了Scikit-learn的GridSearchCV
类来进行SVM分类器的参数优化。首先,我们生成了一个随机数据集,然后定义了参数网格,接着创建了一个SVM分类器和一个网格搜索对象。最后,我们调用fit
方法开始网格搜索,并输出了最佳参数组合和对应的得分。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。