这篇文章主要为大家展示了“java集合之TreeMap源码的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“java集合之TreeMap源码的示例分析”这篇文章吧。
我们知道二叉查找树的遍历有前序遍历、中序遍历、后序遍历。
(1)前序遍历,先遍历我,再遍历我的左子节点,最后遍历我的右子节点;
(2)中序遍历,先遍历我的左子节点,再遍历我,最后遍历我的右子节点;
(3)后序遍历,先遍历我的左子节点,再遍历我的右子节点,最后遍历我;
这里的前中后都是以“我”的顺序为准的,我在前就是前序遍历,我在中就是中序遍历,我在后就是后序遍历。
下面让我们看看经典的中序遍历是怎么实现的:
public class TreeMapTest { public static void main(String[] args) { // 构建一颗10个元素的树 TreeNode<Integer> node = new TreeNode<>(1, null).insert(2) .insert(6).insert(3).insert(5).insert(9) .insert(7).insert(8).insert(4).insert(10); // 中序遍历,打印结果为1到10的顺序 node.root().inOrderTraverse(); } } /** * 树节点,假设不存在重复元素 * @param <T> */ class TreeNode<T extends Comparable<T>> { T value; TreeNode<T> parent; TreeNode<T> left, right; public TreeNode(T value, TreeNode<T> parent) { this.value = value; this.parent = parent; } /** * 获取根节点 */ TreeNode<T> root() { TreeNode<T> cur = this; while (cur.parent != null) { cur = cur.parent; } return cur; } /** * 中序遍历 */ void inOrderTraverse() { if(this.left != null) this.left.inOrderTraverse(); System.out.println(this.value); if(this.right != null) this.right.inOrderTraverse(); } /** * 经典的二叉树插入元素的方法 */ TreeNode<T> insert(T value) { // 先找根元素 TreeNode<T> cur = root(); TreeNode<T> p; int dir; // 寻找元素应该插入的位置 do { p = cur; if ((dir=value.compareTo(p.value)) < 0) { cur = cur.left; } else { cur = cur.right; } } while (cur != null); // 把元素放到找到的位置 if (dir < 0) { p.left = new TreeNode<>(value, p); return p.left; } else { p.right = new TreeNode<>(value, p); return p.right; } } }
从上面二叉树的遍历我们很明显地看到,它是通过递归的方式实现的,但是递归会占用额外的空间,直接到线程栈整个释放掉才会把方法中申请的变量销毁掉,所以当元素特别多的时候是一件很危险的事。
(上面的例子中,没有申请额外的空间,如果有声明变量,则可以理解为直到方法完成才会销毁变量)
那么,有没有什么方法不用递归呢?
让我们来看看java中的实现:
@Override public void forEach(BiConsumer<? super K, ? super V> action) { Objects.requireNonNull(action); // 遍历前的修改次数 int expectedModCount = modCount; // 执行遍历,先获取第一个元素的位置,再循环遍历后继节点 for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) { // 执行动作 action.accept(e.key, e.value); // 如果发现修改次数变了,则抛出异常 if (expectedModCount != modCount) { throw new ConcurrentModificationException(); } } }
是不是很简单?!
(1)寻找第一个节点;
从根节点开始找最左边的节点,即最小的元素。
final Entry<K,V> getFirstEntry() { Entry<K,V> p = root; // 从根节点开始找最左边的节点,即最小的元素 if (p != null) while (p.left != null) p = p.left; return p; }
(2)循环遍历后继节点;
寻找后继节点这个方法我们在删除元素的时候也用到过,当时的场景是有右子树,则从其右子树中寻找最小的节点。
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) { if (t == null) // 如果当前节点为空,返回空 return null; else if (t.right != null) { // 如果当前节点有右子树,取右子树中最小的节点 Entry<K,V> p = t.right; while (p.left != null) p = p.left; return p; } else { // 如果当前节点没有右子树 // 如果当前节点是父节点的左子节点,直接返回父节点 // 如果当前节点是父节点的右子节点,一直往上找,直到找到一个祖先节点是其父节点的左子节点为止,返回这个祖先节点的父节点 Entry<K,V> p = t.parent; Entry<K,V> ch = t; while (p != null && ch == p.right) { ch = p; p = p.parent; } return p; } }
让我们一起来分析下这种方式的时间复杂度吧。
首先,寻找第一个元素,因为红黑树是接近平衡的二叉树,所以找最小的节点,相当于是从顶到底了,时间复杂度为O(log n);
其次,寻找后继节点,因为红黑树插入元素的时候会自动平衡,最坏的情况就是寻找右子树中最小的节点,时间复杂度为O(log k),k为右子树元素个数;
最后,需要遍历所有元素,时间复杂度为O(n);
所以,总的时间复杂度为 O(log n) + O(n * log k) ≈ O(n)。
虽然遍历红黑树的时间复杂度是O(n),但是它实际是要比跳表要慢一点的,啥?跳表是啥?安心,后面会讲到跳表的。
以上是“java集合之TreeMap源码的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。