这学期有一门运筹学,讲的两大块儿:线性优化和非线性优化问题。在非线性优化问题这里涉及到拉格朗日乘子法,经常要算一些非常变态的线性方程,于是我就想用python求解线性方程。查阅资料的过程中找到了一个极
前言 感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类。感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型。 通过梯度下降使误分类的
自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络。 相对于感知器,采用了f(z)=z的激活函数,属于连续函数。 代价函数为LMS函数,最小均方算法,Lea
最近听了张江老师的深度学习课程,用Pytorch实现神经网络预测,之前做Titanic生存率预测的时候稍微了解过Tensorflow,听说Tensorflow能做的Pyorch都可以做,而且更方便快捷
线性一致性(Linearizability)是分布式系统中常见的一致性保证。那么如何验证系统是否正确地提供了线性一致性服务呢?本文希望从‘什么是线性一致性’,‘如何验证线性一致性’,问题复杂度,常见的
1、计数排序 (1)、算法思想 是一组在特定范围内的整数,在线性时间内排序,比nlog(n)更快的排序算法; 较小范围内是比较好的排序算法,如果很大是很
1、桶排序 可以排序的范围数较小,是一种以空间换时间的排序算法; 不考虑重复元素的出现---->桶排;解决方案在计数排序; (1)、代码实现#include&