温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python中有没有spark库

发布时间:2020-11-13 14:20:10 来源:亿速云 阅读:139 作者:小新 栏目:编程语言

这篇文章给大家分享的是有关python中有没有spark库的内容。小编觉得挺实用的,因此分享给大家做个参考。一起跟随小编过来看看吧。

从这个名字pyspark就可以看出来,它是由python和spark组合使用的.

相信你此时已经电脑上已经装载了hadoop,spark,python3.

Spark提供了一个Python_Shell,即pyspark,从而可以以交互的方式使用Python编写Spark程序。

pyspark里最核心的模块是SparkContext(简称sc),最重要的数据载体是RDD。RDD就像一个NumPy array或者一个Pandas Series,可以视作一个有序的item集合。只不过这些item并不存在driver端的内存里,而是被分割成很多个partitions,每个partition的数据存在集群的executor的内存中。

引入Python中pyspark工作模块

import pyspark
from pyspark import SparkContext as sc
from pyspark import SparkConf
conf=SparkConf().setAppName("miniProject").setMaster("local[*]")
sc=SparkContext.getOrCreate(conf)
#任何Spark程序都是SparkContext开始的,SparkContext的初始化需要一个SparkConf对象,SparkConf包含了Spark集群配置的各种参数(比如主节点的URL)。初始化后,就可以使用SparkContext对象所包含的各种方法来创建和操作RDD和共享变量。Spark shell会自动初始化一个SparkContext(在Scala和Python下可以,但不支持Java)。
#getOrCreate表明可以视情况新建session或利用已有的session

SparkSession是Spark 2.0引入的新概念。

SparkSession为用户提供了统一的切入点,来让用户学习spark的各项功能。 在spark的早期版本中,SparkContext是spark的主要切入点,由于RDD是主要的API,我们通过sparkcontext来创建和操作RDD。对于每个其他的API,我们需要使用不同的context。

例如,对于Streming,我们需要使用StreamingContext;对于sql,使用sqlContext;对于hive,使用hiveContext。但是随着DataSet和DataFrame的API逐渐成为标准的API,就需要为他们建立接入点。所以在spark2.0中,引入SparkSession作为DataSet和DataFrame API的切入点。

SparkSession实质上是SQLContext和HiveContext的组合(未来可能还会加上StreamingContext),所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了SparkContext,所以计算实际上是由SparkContext完成的。

感谢各位的阅读!关于python中有没有spark库就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到吧!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI