本篇内容介绍了“使用Redis能解决什么问题”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
有memcached使用经验的人可能知道,用户只能用APPEND命令将数据添加到已有字符串的末尾。memcached的文档中声明,可以用APPEND命令来管理元素列表。这很好!用户可以将元素追加到一个字符串的末尾,并将那个字符串当作列表来使用。但随后如何删除这些元素呢?memcached采用的办法是通过黑名单(blacklist)来隐藏列表里面的元素,从而避免对元素执行读取、更新、写入(包括在一次数据库查询之后执行的memcached写入)等操作。相反地,Redis的LIST和SET允许用户直接添加或者删除元素。
使用Redis而不是memcached来解决问题,不仅可以让代码变得更简短、更易懂、更易维护,而且还可以使代码的运行速度更快(因为用户不需要通过读取数据库来更新数据)。除此之外,在其他许多情况下,Redis的效率和易用性也比关系数据库要好得多。
数据库的一个常见用法是存储长期的报告数据,并将这些报告数据用作固定时间范围内的聚合数据(aggregates)。收集聚合数据的常见做法是:先将各个行插入一个报告表里面,之后再通过扫描这些行来收集聚合数据,并根据收集到的聚合数据来更新聚合表中已有的那些行。之所以使用插入行的方式来存储,是因为对于大部分数据库来说,插入行操作的执行速度非常快(插入行只会在硬盘文件末尾进行写入)。不过,对表里面的行进行更新却是一个速度相当慢的操作,因为这种更新除了会引起一次随机读(random read)之外,还可能会引起一次随机写(random write)。而在Redis里面,用户可以直接使用原子的(atomic)INCR命令及其变种来计算聚合数据,并且因为Redis将数据存储在内存里面2,而且发送给Redis的命令请求并不需要经过典型的查询分析器(parser)或者查询优化器(optimizer)进行处理,所以对Redis存储的数据执行随机写的速度总是非常迅速的。
使用 Redis 而不是关系数据库或者其他硬盘存储数据库,可以避免写入不必要的临时数据,也免去了对临时数据进行扫描或者删除的麻烦,并最终改善程序的性能。虽然上面列举的都是一些简单的例子,但它们很好地证明了“工具会极大地改变人们解决问题的方式”这一点。
除了第6章提到的任务队列(task queue)之外,本书的大部分内容都致力于实时地解决问题。本书通过展示各种技术并提供可工作的代码来帮助读者消灭瓶颈、简化代码、收集数据、分发(distribute)数据、构建实用程序(utility),并最终帮助读者更轻松地完成构建软件的任务。只要正确地使用书中介绍的技术,读者的软件就可以扩展至令那些所谓的“Web扩展技术(web-sacle technology)”相形见绌的地步。
“使用Redis能解决什么问题”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。