温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python如何实现计算滚动方差talib和pd.rolling函数差异

发布时间:2020-07-17 16:18:20 来源:亿速云 阅读:500 作者:小猪 栏目:开发技术

这篇文章主要为大家展示了python如何实现计算滚动方差talib和pd.rolling函数差异,内容简而易懂,希望大家可以学习一下,学习完之后肯定会有收获的,下面让小编带大家一起来看看吧。

我就废话不多说了,大家还是直接看代码吧!

# -*- coding: utf-8 -*-
"""
Created on Thu Apr 12 11:23:46 2018
@author: henbile
"""
 
#计算滚动波动率可以使用专门做技术分析的talib包里面的函数,也可以使用pandas包里面的滚动函数。
#但是两个函数对于分母的选择,就是使用N还是N-1作为分母这件事情上是有分歧的。
#另一个差异在于:talib包计算基于numpy,而pd.rolling是基于Series或者DataFrame的。
 
import pandas as pd
import numpy as np
import talib as tb
 
a = tb.VAR(closeFull[:,0], timeperiod = 12, nbdev =1)
b = tb.VAR(closeFull[:,0], timeperiod = 12, nbdev =0)
 
#我以为nbdev是涉及分母的数量,发现其实不是。nbdev = -1也没有改变。
 
c = pd.Series(closeFull[:,0]).rolling(window = 12, center = False).var()
#tb基于np数据,pd基于pd包的两个类型的数据。
 
d = pd.rolling_var(pd.Series(closeFull[:,0]), window= 12, min_periods=None, freq=None, center=False, how=None)
#__main__:1: FutureWarning: pd.rolling_var is deprecated for Series and will be removed in a future version, replace with 
#    Series.rolling(window=12,center=False).var()
 
#以前的公式是d,现在运行d会报错,所以改正成c的形式。
 
closeFull[0:12,0].var(ddof =1)
#Out[28]: 0.30576590909090895
 
#ddof参数的意义:分母是N-ddof
 
closeFull[0:12,0].var(ddof =0)
#Out[29]: 0.28028541666666656
 
#因为window是12,所以选第11个print
print(a[11],b[11],c[11],d[11])
#0.28028541666667195 0.28028541666667195 0.3057659090909086 0.3057659090909086
 
#计算都是var的计算,大胆的推测std的计算也是适用的。
#talib包的std运算的公式是tb.STDDEV
#pd.rolling就是var换成std
#谨慎起见,还是计算一下,看一看。
#最后发现大胆的推测是正确的。
 
e = tb.STDDEV(closeFull[:,0], timeperiod = fastPeriod, nbdev = 1)
f = pd.Series(closeFull[:,0]).rolling(window = fastPeriod, center = False).std()
 
closeFull[0:12,0].std(ddof =1)
#Out[45]: 0.5529610375884624
 
closeFull[0:12,0].std(ddof =0)
#Out[46]: 0.5294198869202653
 
print(e[11], f[11])
#0.5294198869202704 0.5529610375884622

以上就是关于python如何实现计算滚动方差talib和pd.rolling函数差异的内容,如果你们有学习到知识或者技能,可以把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI