温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python中opencv对图像颜色通道进行加减操作溢出的解析

发布时间:2020-07-20 09:28:08 来源:亿速云 阅读:518 作者:小猪 栏目:开发技术

这篇文章主要讲解了python中opencv对图像颜色通道进行加减操作溢出的解析,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

由于opencv读入图片数据类型是uint8类型,直接加减会导致数据溢出现象

(1)用Numpy操作

可以先将图片数据类型转换成int类型进行计算,

data=np.array(image,dtype='int')

经过处理后(如:遍历,将大于255的置为255,小于0的置为0)

再将图片还原成uint8类型

data=np.array(image,dtype='uint8')

注意:

(1)如果直接相加,那么

当像素值 > 255时,结果为对256取模的结果,例如:(240+66) % 256=50

而不是自动按照255处理

(2)如果直接相减,那么

当像素值<0时,结果为加上256的结果,例如:(100-140)+ 256 = 216

而不是自动按照0处理

例如:

选取一张图片R分量做实验

python中opencv对图像颜色通道进行加减操作溢出的解析

情况一:直接numpy操作

先加到240,再加66,超过了255,可以看到,并不默认255,而是变成了50

python中opencv对图像颜色通道进行加减操作溢出的解析

再试试相减操作:再减去100,本来结果是-50,但是可以看到,变成了206(-50+256)

python中opencv对图像颜色通道进行加减操作溢出的解析

(2)用opencv自带函数操作

图像相加:

cv2.add()

像素值>255, 直接自动按照255处理

图像相减:

cv2.subtract()

像素值小于0,直接自动按照0处理

例如:

r加上300,自动变成255

python中opencv对图像颜色通道进行加减操作溢出的解析

同理,小于0的自动变为0

以上两种方法可以根据需要选择。

补充知识:Opencv numpy中uint8类型存储图像

用opencv处理图像时,可以发现获得的矩阵类型都是uint8

import cv2 as cv
img=cv.imread(hello.png)
print(img)
array([[[...],
    [...],
    [...]]],dtype='uint8')

uint8是专门用于存储各种图像的(包括RGB,灰度图像等),范围是从0–255

这里要注意如何转化到uint8类型

1: numpy有np.uint8()函数,但是这个函数仅仅是对原数据和0xff相与(和最低2字节数据相与),这就容易导致如果原数据是大于255的,那么在直接使用np.uint8()后,比第八位更大的数据都被截断了,比如:

>>>a=[2000,100,2]
>>>np.uint8(a)
array([208, 100, 2], dtype=uint8)

2: 用cv2.normalize函数配合cv2.NORM_MINMAX,可以设置目标数组的最大值和最小值,然后让原数组等比例的放大或缩小到目标数组,如下面的例子中是将img的所有数字等比例的放大或缩小到0–255范围的数组中,

cv2.normalize(img, out, 0, 255, cv2.NORM_MINMAX)

然后改变数据类型

np.array([out],dtype=‘uint8')

看完上述内容,是不是对python中opencv对图像颜色通道进行加减操作溢出的解析有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI