温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

tensorflow模型的save与restore,及checkpoint中如何读取变量

发布时间:2020-07-22 10:02:23 来源:亿速云 阅读:733 作者:小猪 栏目:开发技术

小编这次要给大家分享的是tensorflow模型的save与restore,及checkpoint中如何读取变量,文章内容丰富,感兴趣的小伙伴可以来了解一下,希望大家阅读完这篇文章之后能够有所收获。

创建一个NN

import tensorflow as tf
import numpy as np

#fake data
x = np.linspace(-1, 1, 100)[:, np.newaxis] #shape(100,1)
noise = np.random.normal(0, 0.1, size=x.shape)
y = np.power(x, 2) + noise  #shape(100,1) + noise
tf_x = tf.placeholder(tf.float32, x.shape) #input x
tf_y = tf.placeholder(tf.float32, y.shape) #output y
l = tf.layers.dense(tf_x, 10, tf.nn.relu) #hidden layer
o = tf.layers.dense(l, 1)     #output layer
loss = tf.losses.mean_squared_error(tf_y, o ) #compute loss
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(loss)

1.使用save对模型进行保存

sess= tf.Session()
sess.run(tf.global_variables_initializer())  #initialize var in graph
saver = tf.train.Saver() # define a saver for saving and restoring
for step in range(100):   #train
 sess.run(train_op,{tf_x:x, tf_y:y})
saver.save(sess, 'params/params.ckpt', write_meta_graph=False) # mate_graph is not recommend

生成三个文件,分别是checkpoint,.ckpt.data-00000-of-00001,.ckpt.index

2.使用restore对提取模型

在提取模型时,需要将模型结构再定义一遍,再将各参数加载出来

#bulid entire net again and restore
tf_x = tf.placeholder(tf.float32, x.shape)
tf_y = tf.placeholder(tf.float32, y.shape)
l_ = tf.layers.dense(tf_x, 10, tf.nn.relu)
o_ = tf.layers.dense(l_, 1)
loss_ = tf.losses.mean_squared_error(tf_y, o_)
 
sess = tf.Session()
# don't need to initialize variables, just restoring trained variables
saver = tf.train.Saver() # define a saver for saving and restoring
saver.restore(sess, './params/params.ckpt')

3.有时会报错Not found:b1 not found in checkpoint

这时我们想知道我在文件中到底保存了什么内容,即需要读取出checkpoint中的tensor

import os
from tensorflow.python import pywrap_tensorflow
checkpoint_path = os.path.join('params','params.ckpt')
# Read data from checkpoint file
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
# Print tensor name and value
f = open('params.txt','w')
for key in var_to_shape_map: # write tensors' names and values in file
 print(key,file=f)
 print(reader.get_tensor(key),file=f)
f.close()

运行后生成一个params.txt文件,在其中可以看到模型的参数。

补充知识:TensorFlow按时间保存检查点

一 实例

介绍一种更简便地保存检查点功能的方法——tf.train.MonitoredTrainingSession函数,该函数可以直接实现保存及载入检查点模型的文件。

演示使用MonitoredTrainingSession函数来自动管理检查点文件。

二 代码

import tensorflow as tf
tf.reset_default_graph()
global_step = tf.train.get_or_create_global_step()
step = tf.assign_add(global_step, 1)
with tf.train.MonitoredTrainingSession(checkpoint_dir='log/checkpoints',save_checkpoint_secs = 2) as sess:
 print(sess.run([global_step]))
 while not sess.should_stop():
  i = sess.run( step)
  print( i)

三 运行结果

1 第一次运行后,会发现log文件夹下产生如下文件

tensorflow模型的save与restore,及checkpoint中如何读取变量

2 第二次运行后,结果如下:

INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Restoring parameters from log/checkpoints\model.ckpt-15147
INFO:tensorflow:Saving checkpoints for 15147 into log/checkpoints\model.ckpt.
[15147]
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159

四 说明

本例是按照训练时间来保存的。通过指定save_checkpoint_secs参数的具体秒数,来设置每训练多久保存一次检查点。

可见程序自动载入检查点是从第15147次开始运行的。

五 注意

1 如果不设置save_checkpoint_secs参数,默认的保存时间是10分钟,这种按照时间保存的模式更适合用于使用大型数据集来训练复杂模型的情况。

2 使用该方法,必须要定义global_step变量,否则会报错误。

看完这篇关于tensorflow模型的save与restore,及checkpoint中如何读取变量的文章,如果觉得文章内容写得不错的话,可以把它分享出去给更多人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI