温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

在python中如何求分布函数相关的包

发布时间:2020-08-03 13:51:06 来源:亿速云 阅读:223 作者:小猪 栏目:开发技术

这篇文章主要讲解了在python中如何求分布函数相关的包,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

为了了解(正态)分布的方法和属性,我们首先引入norm

 >>>from scipy.stats import norm
 >>>rv = norm()
 >>>dir(rv) # reformatted
[‘__class__', ‘__delattr__', ‘__dict__', ‘__doc__', ‘__getattribute__',
‘__hash__', ‘__init__', ‘__module__', ‘__new__', ‘__reduce__', ‘__reduce_ex__',
‘__repr__', ‘__setattr__', ‘__str__', ‘__weakref__', ‘args', ‘cdf', ‘dist',
‘entropy', ‘isf', ‘kwds', ‘moment', ‘pdf', ‘pmf', ‘ppf', ‘rvs', ‘sf', ‘stats']

其中,连续随机变量的主要公共方法如下:

rvs: Random Variates
pdf: Probability Density Function
cdf: Cumulative Distribution Function
sf: Survival Function (1-CDF)
ppf: Percent Point Function (Inverse of CDF)
isf: Inverse Survival Function (Inverse of SF)
stats: Return mean, variance, (Fisher's) skew, or (Fisher's) kurtosis
moment: non-central moments of the distribution

rvs:随机变量

pdf:概率密度函。

cdf:累计分布函数

sf:残存函数(1-CDF)

ppf:分位点函数(CDF的逆)

isf:逆残存函数(sf的逆)

stats:返回均值,方差,(费舍尔)偏态,(费舍尔)峰度。

moment:分布的非中心矩。

我们以cdf为例:

 >>>norm.cdf(0)
0.5
>>>norm.mean(), norm.std(), norm.var()
(0.0, 1.0, 1.0)

重点来了,cdf的逆竟然也可以求,这个方法就是ppf

>>>norm.ppf(0.5)
0.0

离散分布中,pdf被更换为密度函数pmf,而cdf的逆也有所不同:

ppf(q) = min{x : cdf(x) >= q, x integer}

此外,fit可以求分布参数的极大似然估计,包括location与scale,nnlf可以求负对数似然函数,expect可以计算函数pdf或pmf的期望值。

看完上述内容,是不是对在python中如何求分布函数相关的包有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI