温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python自动化测试笔试面试题精选

发布时间:2020-09-30 14:15:01 来源:脚本之家 阅读:154 作者:临渊 栏目:开发技术

前言

随着行业的发展,编程能力逐渐成为软件测试从业人员的一项基本能力。因此在笔试和面试中常常会有一定量的编码题,主要考察以下几点。

  • 基本编码能力及思维逻辑
  • 基本数据结构(顺序表、链表、队列、栈、二叉树)
  • 基本算法(排序、查找、递归)及时间复杂度

除基本算法之外,笔试面试中经常会考察以下三种思想:

  • 哈希
  • 递归
  • 分治

哈希

哈希即Python中的映射类型,字典和集合,键值唯一,查找效率高,序列(列表、元祖、字符串)的元素查找时间复杂度是O(n),而字典和集合的查找只需要O(1)。
因此哈希在列表问题中主要有两种作用:

去重

优化查找效率

例题1:列表去重#

列表去重在不考虑顺序的情况下可以直接使用set()转换(转换后会自动排序),需要保持顺序可以使用字典构建的fromkeys()方法,利用字典键值的唯一性去重。

不考虑顺序:

l = [2,1,2,3,4,5,6,6,5,4,3,2,1]
result = list(set(l))
print(result)

运行结果:

[1, 2, 3, 4, 5, 6]

考虑顺序:

l = [2,1,2,3,4,5,6,6,5,4,3,2,1]
result = list({}.fromkeys(l).keys())
print(result)

运行结果:

[2, 1, 3, 4, 5, 6]

例题2:分组

一串字母数字组合的字符串,找出相同的字母或数字,并按照个数排序。

l = [1,2,3,'a','b','c',1,2,'a','b',3,'c','d','a','b',1]
set1 = set(l)
result = [(item, l.count(item)) for item in set1]
result.sort(key=lambda x:x[1], reverse=True)
print(result)

这里使用哈希的键值不重复性。当然也可以使用python自带的groupby函数,代码如下:

from itertools import groupby

l = [1,2,3,'a','b','c',1,2,'a','b',3,'c','d','a','b',1]
l.sort(key=lambda x: str(x)) # 分组前需要先排序
result = []
for item, group in groupby(l, key=lambda x: str(x)):
  result.append((item, len(list(group))))
result.sort(key=lambda x:x[1], reverse=True)
print(result)

例题3:海量数据找出top K的数据#

对于小数据量可以使用排序+切片,而对于海量数据,需要考虑服务器硬件条件。即要考虑时间效率,也要考虑内存占用,同时还要考虑数据特征。如果大量的重复数据,可以先用哈希进行去重来降低数据量。

这里我们使用生成器生成1000万个随机整数,求最大的1000个数,生成随机数的代码如下:

import random
import time
n = 10000 * 1000
k = 1000
print(n)
def gen_num(n):
  for i in range(n):
    yield random.randint(0, n)
l = gen_num(n)

不限内存可以直接使用set()去重+排序

start = time.time()
l = list(set(l))
result = l[-k:]
result.reverse()
print(time.time()-start)

1000w个数据会全部读入内存,set后列表自动为递增顺序,使用切片取-1000到最后的即为top 1000的数

使用堆排可以节省一些内存

start = time.time()
result = heapq.nlargest(k, l)
print(time.time()-start)

这里是用来Python自带的堆排库heapq。使用nlargest(k,l)可以取到l序列,最大的k个数。

较小内存可以分治策略,使用多线程对数据进行分组处理(略)

例题4:两数之和#

l=[1,2,3,4,5,6,7,8] 数据不重复,target=6,快速找出数组中两个元素之和等于target 的数组下标。

注意,不要使用双重循环,暴力加和来和target对比,正确的做法是单层循环,然后查找target与当前值的差,是否存在于列表中。

但是由于列表的in查询时间复杂度是O(n),即隐含了一层循环,这样效率其实和双重循环是一样的,都是O(n^2)。

这里就可以使用哈希来优化查询差值是否在列表中操作,将O(n)降为O(1),因此总体的效率就会变成O(n^2)->O(n)。

l = [1,2,3,4,5,6,7,8]
set1 = set(list1)  # 使用集合已方便查找
target = 6

result = []
for a in list1:
  b = target - a
  if a < b < target and b in set1:  # 在集合中查找,为避免重复,判断a为较小的那个值
    result.append((list1.index(a), list1.index(b)))  # 列表index取下标的操作为O(1) 
print(result)

递归问题

递归是一种循环调用自身的函数。可以用于解决以下高频问题:

  • 阶乘
  • 斐波那切数列
  • 跳台阶、变态跳台阶
  • 快速排序
  • 二分查找
  • 二叉树深度遍历(前序、中序、后序)
  • 求二叉树深度
  • 平衡二叉树判断
  • 判断两颗树是否相同

递归是一种分层推导解决问题的方法,是一种非常重要的解决问题的思想。递归可快速将问题层级化,简单化,只需要考虑出口和每层的推导即可。

如阶乘,要想求n!,只需要知道前一个数的阶乘(n-1)!,然后乘以n即可,因此问题可以转为求上一个数的阶乘,依次向前,直到第一个数。

举个通俗的例子:

A欠你10万,但是他没那么多钱,B欠A 8万,C欠B 7万 C现在有钱。因此你要逐层找到C,一层一层还钱,最后你才能拿到属于你的10万。

到此这篇关于Python自动化测试笔试面试题精选的文章就介绍到这了,更多相关Python自动化测试笔试面试时常见的编程题内容请搜索亿速云以前的文章或继续浏览下面的相关文章希望大家以后多多支持亿速云!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI