这篇文章主要介绍了如何在python中使用html2text库将HTML转换成markdown,此处通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考价值,需要的朋友可以参考下:
Python是一种跨平台的、具有解释性、编译性、互动性和面向对象的脚本语言,其最初的设计是用于编写自动化脚本,随着版本的不断更新和新功能的添加,常用于用于开发独立的项目和大型项目。
首先,进行安装:
pip install html2text
安装完后,就可以通过命令html2text进行一系列的操作了。
html2text命令使用方式为:html2text [(filename|url) [encoding]]。通过html2text -h,我们可以查看该命令支持的选项:
选项 | 描述 |
---|---|
--version | 显示程序版本号并退出 |
-h, --help | 显示帮助信息并退出 |
--no-wrap-links | 转换期间包装链接 |
--ignore-emphasis | 对于强调,不包含任何格式 |
--reference-links | 使用参考样式的链接,而不是内联链接 |
--ignore-links | 对于链接,不包含任何格式 |
--protect-links | 保护链接不换行,并用尖角括号将其围起来 |
--ignore-images | 对于图像,不包含任何格式 |
--images-to-alt | 丢弃图像数据,只保留替换文本 |
--images-with-size | 将图像标签作为原生html,并带height和width属性,以保留维度 |
-g, --google-doc | 转换一个被导出为html的谷歌文档 |
-d, --dash-unordered-list | 对于无序列表,使用破折号而不是星号 |
-e, --asterisk-emphasis | 对于被强调文本,使用星号而不是下划线 |
-b BODY_WIDTH, --body-width=BODY_WIDTH | 每个输出行的字符数,0表示不自动换行 |
-i LIST_INDENT, --google-list-indent=LIST_INDENT | Google缩进嵌套列表的像素数 |
-s, --hide-strikethrough | 隐藏带删除线文本。只有当也指定-g的时候才有用 |
--escape-all | 转义所有特殊字符。输出较为不可读,但是会避免极端情况下的格式化问题。 |
--bypass-tables | 以HTML格式格式化表单,而不是Markdown语法。 |
--single-line-break | 在一个块元素后使用单个换行符,而不是两个换行符。注意:要求–body-width=0 |
--unicode-snob | 整个文档中都使用unicode |
--no-automatic-links | 在任何适用情况下,不要使用自动链接 |
--no-skip-internal-links | 不要跳过内部链接 |
--links-after-para | 将链接置于每段之后而不是文档之后 |
--mark-code | 用 复制代码 代码如下: … 将代码块标记出来 |
--decode-errors=DECODE_ERRORS | 如何处理decode错误。接受值为'ignore', ‘strict'和'replace' |
具体使用如下:
# 传递url html2text http://eepurl.com/cK06Gn # 传递文件名,编码方式设置为utf-8 html2text test.html utf-8
除了直接通过命令行使用html2text外,我们还可以在脚本中将其作为库导入。
我们以以下html文本为例
html_content = """ <span ><a href="http://blog.yhat.com/posts/visualize-nba-pipelines.html" rel="external nofollow" target="_blank" >Data Wrangling 101: Using Python to Fetch, Manipulate & Visualize NBA Data</a></span><br> A tutorial using pandas and a few other packages to build a simple datapipe for getting NBA data. Even though this tutorial is done using NBA data, you don't need to be an NBA fan to follow along. The same concepts and techniques can be applied to any project of your choosing.<br> """
一句话转换html文本为Markdown格式的文本:
import html2text print html2text.html2text(html_content)
输出如下:
[Data Wrangling 101: Using Python to Fetch, Manipulate & Visualize NBA
Data](http://blog.yhat.com/posts/visualize-nba-pipelines.html)
A tutorial using pandas and a few other packages to build a simple datapipe
for getting NBA data. Even though this tutorial is done using NBA data, you
don't need to be an NBA fan to follow along. The same concepts and techniques
can be applied to any project of your choosing.
另外,还可以使用上面的配置项:
import html2text h = html2text.HTML2Text() print h.handle(html_content) # 输出同上
注意:下面仅展示使用某个配置项时的输出,不使用某个配置项时使用默认值的输出(如无特殊说明)同上。
--ignore-emphasis
指定选项–ignore-emphasis
h.ignore_emphasis = True print h.handle("<p>hello, this is <em>Ele</em></p>")
输出为:
hello, this is Ele
不指定选项–ignore-emphasis
h.ignore_emphasis = False # 默认值 print h.handle("<p>hello, this is <em>Ele</em></p>")
输出为:
hello, this is _Ele_
--reference-links
h.inline_links = False print h.handle(html_content)
输出为:
[Data Wrangling 101: Using Python to Fetch, Manipulate & Visualize NBA
Data][16]
A tutorial using pandas and a few other packages to build a simple datapipe
for getting NBA data. Even though this tutorial is done using NBA data, you
don't need to be an NBA fan to follow along. The same concepts and techniques
can be applied to any project of your choosing.
[16]: http://blog.yhat.com/posts/visualize-nba-pipelines.html
--ignore-links
h.ignore_links = True print h.handle(html_content)
输出为:
Data Wrangling 101: Using Python to Fetch, Manipulate & Visualize NBA Data
A tutorial using pandas and a few other packages to build a simple datapipe
for getting NBA data. Even though this tutorial is done using NBA data, you
don't need to be an NBA fan to follow along. The same concepts and techniques
can be applied to any project of your choosing.
--protect-links
h.protect_links = True print h.handle(html_content)
输出为:
[Data Wrangling 101: Using Python to Fetch, Manipulate & Visualize NBA
Data](<http://blog.yhat.com/posts/visualize-nba-pipelines.html>)
A tutorial using pandas and a few other packages to build a simple datapipe
for getting NBA data. Even though this tutorial is done using NBA data, you
don't need to be an NBA fan to follow along. The same concepts and techniques
can be applied to any project of your choosing.
--ignore-images
h.ignore_images = True print h.handle('<p>This is a img: <img src="https://my.oschina.net/img/hot3.png" alt="hot3"> ending ...</p>')
输出为:
This is a img: ending ...
--images-to-alt
h.images_to_alt = True print h.handle('<p>This is a img: <img src="https://my.oschina.net/img/hot3.png" alt="hot3"> ending ...</p>')
输出为:
This is a img: hot3 ending ...
--images-with-size
h.images_with_size = True print h.handle('<p>This is a img: <img src="https://my.oschina.net/img/hot3.png" height=32px width=32px alt="hot3"> ending ...</p>')
输出为:
This is a img: <img src='https://my.oschina.net/img/hot3.png' width='32px'
height='32px' alt='hot3' /> ending ...
--body-width
h.body_width=0 print h.handle(html_content)
输出为:
[Data Wrangling 101: Using Python to Fetch, Manipulate & Visualize NBA Data](http://blog.yhat.com/posts/visualize-nba-pipelines.html)
A tutorial using pandas and a few other packages to build a simple datapipe for getting NBA data. Even though this tutorial is done using NBA data, you don't need to be an NBA fan to follow along. The same concepts and techniques can be applied to any project of your choosing.
--mark-code
h.mark_code=True print h.handle('<pre class="hljs css"><code class="hljs css"> <span class="hljs-selector-tag"><span class="hljs-selector-tag">rpm</span></span> <span class="hljs-selector-tag"><span class="hljs-selector-tag">-Uvh</span></span> <span class="hljs-selector-tag"><span class="hljs-selector-tag">erlang-solutions-1</span></span><span class="hljs-selector-class"><span class="hljs-selector-class">.0-1</span></span><span class="hljs-selector-class"><span class="hljs-selector-class">.noarch</span></span><span class="hljs-selector-class"><span class="hljs-selector-class">.rpm</span></span></code></pre>')
输出为:
复制代码 代码如下:
rpm -Uvh erlang-solutions-1.0-1.noarch.rpm
通过这种方式,就可以以脚本的形式自定义HTML -> MARKDOWN的自动化过程了。例子可参考下面的例子
#-*- coding: utf-8 -*- import sys reload(sys) sys.setdefaultencoding('utf-8') import re import requests from lxml import etree import html2text # 获取第一个issue def get_first_issue(url): resp = requests.get(url) page = etree.HTML(resp.text) issue_list = page.xpath("//ul[@id='archive-list']/div[@class='display_archive']/li/a") fst_issue = issue_list[0].attrib fst_issue["text"] = issue_list[0].text return fst_issue # 获取issue的内容,并转成markdown def get_issue_md(url): resp = requests.get(url) page = etree.HTML(resp.text) content = page.xpath("//table[@id='templateBody']")[0]#'//table[@class="bodyTable"]')[0] h = html2text.HTML2Text() h.body_width=0 # 不自动换行 return h.handle(etree.tostring(content)) subtitle_mapping = { '**From Our Sponsor**': '# 来自赞助商', '**News**': '# 新闻', '**Articles**,** Tutorials and Talks**': '# 文章,教程和讲座', '**Books**': '# 书籍', '**Interesting Projects, Tools and Libraries**': '# 好玩的项目,工具和库', '**Python Jobs of the Week**': '# 本周的Python工作', '**New Releases**': '# 最新发布', '**Upcoming Events and Webinars**': '# 近期活动和网络研讨会', } def clean_issue(content): # 去除‘Share Python Weekly'及后面部分 content = re.sub('\*\*Share Python Weekly.*', '', content, flags=re.IGNORECASE) # 预处理标题 for k, v in subtitle_mapping.items(): content = content.replace(k, v) return content tpl_str = """原文:[{title}]({url}) --- {content} """ def run(): issue_list_url = "https://us2.campaign-archive.com/home/?u=e2e180baf855ac797ef407fc7&id=9e26887fc5" print "开始获取最新的issue……" fst = get_first_issue(issue_list_url) #fst = {'href': 'http://eepurl.com/dqpDyL', 'title': 'Python Weekly - Issue 341'} print "获取完毕。开始截取最新的issue内容并将其转换成markdown格式" content = get_issue_md(fst['href']) print "开始清理issue内容" content = clean_issue(content) print "清理完毕,准备将", fst['title'], "写入文件" title = fst['title'].replace('- ', '').replace(' ', '_') with open(title.strip()+'.md', "wb") as f: f.write(tpl_str.format(title=fst['title'], url=fst['href'], content=content)) print "恭喜,完成啦。文件保存至%s.md" % title if __name__ == '__main__': run()
到此这篇关于如何在python中使用html2text库将HTML转换成markdown的文章就介绍到这了,更多相关如何在python中使用html2text库将HTML转换成markdown的内容请搜索亿速云以前的文章或继续浏览下面的相关文章希望大家以后多多支持亿速云!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。