温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

tensorflow怎么获取checkpoint中的变量列表

发布时间:2021-05-08 14:48:41 来源:亿速云 阅读:247 作者:小新 栏目:开发技术

小编给大家分享一下tensorflow怎么获取checkpoint中的变量列表,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

方式1:静态获取,通过直接解析checkpoint文件获取变量名及变量值

通过

reader = tf.train.NewCheckpointReader(model_path)

或者通过:

from tensorflow.python import pywrap_tensorflow
reader = pywrap_tensorflow.NewCheckpointReader(model_path)

代码:

model_path = "./checkpoints/model.ckpt-75000"
## 下面两个reader作用等价
#reader = pywrap_tensorflow.NewCheckpointReader(model_path)
reader = tf.train.NewCheckpointReader(model_path)
 
## 用reader获取变量字典,key是变量名,value是变量的shape
var_to_shape_map = reader.get_variable_to_shape_map()
for var_name in var_to_shape_map.keys():
 #用reader获取变量值
 var_value = reader.get_tensor(var_name)
 
 print("var_name",var_name)
 print("var_value",var_value)

方式2:动态获取,先加载checkpoint模型,然后用graph.get_tensor_by_name()获取变量值

代码 (注意:要先在脚本中构建model中对应的变量及scope):

 model_path = "./checkpoints/model.ckpt-75000"
 config = tf.ConfigProto()
 config.gpu_options.allow_growth = True
 with tf.Session(config=config) as sess:
  ## 获取待加载的变量列表
  trainable_vars = tf.trainable_variables()
  g_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope="generator")
  d_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='discriminator')
  flow_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='flow_net')
  var_restore = g_vars + d_vars
 
  ## 仅加载目标变量
  loader = tf.train.Saver(var_restore)
  loader.restore(sess,model_path)
 
  ## 显示加载的变量值
  graph = tf.get_default_graph()
  for var in var_restore:
   tensor = graph.get_tensor_by_name(var.name)
   print("=======变量名=======",tensor)
   print("-------变量值-------",sess.run(tensor))

以上是“tensorflow怎么获取checkpoint中的变量列表”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI