温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

PyTorch中 tensor.detach() 和 tensor.data 的区别详解

发布时间:2020-08-31 09:29:53 来源:脚本之家 阅读:211 作者:梦家 栏目:开发技术

PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 。

.detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候.

举例:

tensor.data

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.data
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的数值被c.zero_()修改
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 反向传播
>>> a.grad    # 这个结果很严重的错误,因为out已经改变了
tensor([ 0., 0., 0.])

tensor.detach()

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.detach()
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out     # out的值被c.zero_()修改 !!
tensor([ 0., 0., 0.])

>>> out.sum().backward() # 需要原来out得值,但是已经被c.zero_()覆盖了,结果报错
RuntimeError: one of the variables needed for gradient
computation has been modified by an

以上这篇PyTorch中 tensor.detach() 和 tensor.data 的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持亿速云。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI