这期内容当中小编将会给大家带来有关怎么在python中使用dlib库实现一个人脸检测功能,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
代码
import dlib import cv2 import os def resize(img, width=None, height=None, inter=cv2.INTER_AREA): """ initialize the dimensions of the input image and obtain the image size """ dim = None (h, w) = img.shape[:2] if width is None and height is None: return img if width is None: r = height / float(h) dim = (int(w * r), height) else: r = width / float(w) dim = (width, int(h * r)) # resize the image resized = cv2.resize(img, dim, interpolation=inter) # return the resized image return resized # 使用 Dlib 的正面人脸检测器 frontal_face_detector detector = dlib.get_frontal_face_detector() # 图片所在路径 imgs_path = 'test/' filelist = os.listdir(imgs_path) # 使用 detector 检测器来检测图像中的人脸 for img_path in filelist: img = cv2.imread(imgs_path + img_path) img = resize(img, width=512) faces = detector(img, 1) print("人脸数 / Faces in all: ", len(faces)) for i, d in enumerate(faces): w = d.right() - d.left() h = d.bottom() - d.top() d_left = int(d.left() - w * 0.25) d_right = int(d.right() + w * 0.25) d_top = int(d.top() - w * 0.70) d_bottom = int(d.bottom() + w * 0.2) print("第", i + 1, "个人脸的矩形框坐标:", "left:", d_left, "right:", d_right, "top:", d_top, "bottom:", d_bottom) cv2.rectangle(img, tuple([d_left, d_top]), tuple([d_right, d_bottom]), (0, 255, 255), 2) cv2.imshow("img", img) cv2.waitKey(0) cv2.imwrite('./result.jpg',img)
上述就是小编为大家分享的怎么在python中使用dlib库实现一个人脸检测功能了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。