这篇文章主要介绍了利用Python3怎么将视频转换成字符动画,此处通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考价值,需要的朋友可以参考下:
Python是一种跨平台的、具有解释性、编译性、互动性和面向对象的脚本语言,其最初的设计是用于编写自动化脚本,随着版本的不断更新和新功能的添加,常用于用于开发独立的项目和大型项目。
具体代码如下所示:
# -*- coding:utf-8 -*- import json import os import subprocess from pathlib import Path from cv2 import cv2 import numpy as np from time import time import webbrowser play_chars_js = ''' let i = 0; window.setInterval(function(){ let img = frames[i++]; let html = "" for(let line of img){ for(let char of line){ let [[r,g,b], ch] = char; html += '<span >'+ ch + '</span>' // html += '<span >'+ ch + '</span>' } html += "<br>" } document.getElementsByClassName("video-panel")[0].innerHTML = html }, 1000/fps); document.getElementsByTagName("audio")[0].play(); ''' class VideoToHtml: # 像素形状,因为颜色已经用rgb控制了,这里的pixels其实可以随意排 pixels = "$#@&%ZYXWVUTSRQPONMLKJIHGFEDCBA098765432?][}{/)(><zyxwvutsrqponmlkjihgfedcba*+1-." def __init__(self, video_path, fps_for_html=8, time_interval=None): """ :param video_path: 字符串, 视频文件的路径 :param fps_for_html: 生成的html的帧率 :param time_interval: 用于截取视频(开始时间,结束时间)单位秒 """ self.video_path = Path(video_path) # 从指定文件创建一个VideoCapture对象 self.cap = cv2.VideoCapture(video_path) self.width = self.cap.get(cv2.CAP_PROP_FRAME_WIDTH) self.height = self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT) self.frames_count_all = self.cap.get(cv2.CAP_PROP_FRAME_COUNT) self.fps = self.cap.get(cv2.CAP_PROP_FPS) self.resize_width = None self.resize_height = None self.frames_count = 0 self.fps_for_html = fps_for_html self.time_interval = time_interval def video2mp3(self): """#调用ffmpeg获取mp3音频文件""" mp3_path = self.video_path.with_suffix('.mp3') subprocess.call('ffmpeg -i ' + str(self.video_path) + ' -f mp3 ' + str(mp3_path), shell=True) return mp3_path def set_width(self, width): """只能缩小,而且始终保持长宽比""" if width >= self.width: return False else: self.resize_width = width self.resize_height = int(self.height * (width / self.width)) return True def set_height(self, height): """只能缩小,而且始终保持长宽比""" if height >= self.height: return False else: self.resize_height = height self.resize_width = int(self.width * (height / self.height)) return True def resize(self, img): """ 将img转换成需要的大小 原则:只缩小,不放大。 """ # 没指定就不需resize了 if not self.resize_width or not self.resize_height: return img else: size = (self.resize_width, self.resize_height) return cv2.resize(img, size, interpolation=cv2.INTER_CUBIC) def get_img_by_pos(self, pos): """获取到指定位置的帧""" # 把指针移动到指定帧的位置 self.cap.set(cv2.CAP_PROP_POS_FRAMES, pos) # cap.read() 返回值介绍: # ret 布尔值,表示是否读取到图像 # frame 为图像矩阵,类型为 numpy.ndarray. ret, frame = self.cap.read() return ret, frame def get_frame_pos(self): """生成需要获取的帧的位置,使用了惰性求值""" step = self.fps / self.fps_for_html # 如果未指定 if not self.time_interval: self.frames_count = int(self.frames_count_all / step) # 更新count return (int(step * i) for i in range(self.frames_count)) # 如果指定了 start, end = self.time_interval pos_start = int(self.fps * start) pos_end = int(self.fps * end) self.frames_count = int((pos_end - pos_start) / step) # 更新count return (pos_start + int(step * i) for i in range(self.frames_count)) def get_imgs(self): assert self.cap.isOpened() for i in self.get_frame_pos(): ret, frame = self.get_img_by_pos(i) if not ret: print("读取失败,跳出循环") break yield self.resize(frame) # 惰性求值 # 结束时要释放空间 self.cap.release() def get_char(self, gray): percent = gray / 255 # 转换到 0-1 之间 index = int(percent * (len(self.pixels) - 1)) # 拿到index return self.pixels[index] def get_json_pic(self, img): """测试阶段,不实用""" json_pic = [] # 宽高刚好和size相反,要注意。(这是numpy的特性。。) height, width, channel = img.shape # 转换成灰度图,用来选择合适的字符 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for y in range(height): line = [] for x in range(width): r, g, b = img[y][x] gray = img_gray[y][x] char = self.get_char(gray) line.append([[int(r), int(g), int(b)], char]) json_pic.append(line) return json.dumps(json_pic) def write_html_with_json(self, file_name): """测试阶段,不实用""" mp3_path = self.video2mp3() time_start = time() with open(file_name, 'w') as html: # 要记得设置monospace等宽字体,不然没法玩 html.write('<!DOCTYPE html>' '<html>' '<body >' '<div class="video-panel"></div>' f'<audio src="{mp3_path.name}" autoplay controls></audio>' '</body>' '<script>' 'var frames=[\n') try: i = 0 for img in self.get_imgs(): json_pic = self.get_json_pic(img) html.write(f"{json_pic},") if i % 20: print(f"进度:{i/self.frames_count * 100:.2f}%, 已用时:{time() - time_start:.2f}") i += 1 finally: html.write('\n];\n' f'let fps={self.fps_for_html};\n' f'{play_chars_js}' '</script>\n' '</html>') def main(): # 视频路径,换成你自己的 video_path = "ceshi.mp4" video2html = VideoToHtml(video_path, fps_for_html=8) video2html.set_width(120) html_name = Path(video_path).with_suffix(".html").name video2html.write_html_with_json(html_name) if __name__ == "__main__": main()
到此这篇关于利用Python3怎么将视频转换成字符动画的文章就介绍到这了,更多相关利用Python3怎么将视频转换成字符动画的内容请搜索亿速云以前的文章或继续浏览下面的相关文章希望大家以后多多支持亿速云!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。