这篇文章主要介绍了怎么愉快地迁移到Python 3,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
引言
如今 Python 成为机器学习和大量使用数据操作的科学领域的主流语言; 它拥有各种深度学习框架和完善的数据处理和可视化工具。但是,Python 生态系统在 Python2 和 Python3 中共存,而Python2 仍在数据科学家中使用。到2019年底,也将停止支持 Python2。至于numpy,2018年9月之后任何新功能版本都将只支持Python3。同样的还包括pandas, matplotlib, ipython, jupyter notebook and jupyter lab。所以迁移到python3刻不容缓,当然不止是这些,还有些新特性让我们跟随后面到文章一一进行了解。
使用pathlib处理更好的路径
pathlib 是 Python3 中的一个默认模块,可以帮助你避免使用大量的 os.path.join。
from pathlib import Path dataset = 'wiki_images' datasets_root = Path('/path/to/datasets/') #Navigating inside a directory tree,use:/ train_path = datasets_root / dataset / 'train' test_path = datasets_root / dataset / 'test' for image_path in train_path.iterdir(): with image_path.open() as f: # note, open is a method of Path object # do something with an image
不要用字符串链接的形式拼接路径,根据操作系统的不同会出现错误,我们可以使用/结合 pathlib来拼接路径,非常的安全、方便和高可读性。
pathlib 还有很多属性,具体的可以参考pathlib的官方文档,下面列举几个:
from pathlib import Path a = Path("/data") b = "test" c = a / b print(c) print(c.exists()) # 路径是否存在 print(c.is_dir()) # 判断是否为文件夹 print(c.parts) # 分离路径 print(c.with_name('sibling.png')) # 只修改拓展名, 不会修改源文件 print(c.with_suffix('.jpg')) # 只修改拓展名, 不会修改源文件 c.chmod(777) # 修改目录权限 c.rmdir() # 删除目录
类型提示现在是语言的一部分
一个在 Pycharm 使用Typing的例子:
引入类型提示是为了帮助解决程序日益复杂的问题,IDE可以识别参数的类型进而给用户提示。
关于Tying的具体用法,可以看我之前写的:python类型检测最终指南--Typing的使用
运行时类型提示类型检查
除了之前文章提到 mypy 模块继续类型检查以外,还可以使用 enforce 模块进行检查,通过 pip 安装即可,使用示例如下:
import enforce @enforce.runtime_validation def foo(text: str) -> None: print(text) foo('Hi') # ok foo(5) # fails
输出
Hi Traceback (most recent call last): File "/Users/chennan/pythonproject/dataanalysis/e.py", line 10, in <module> foo(5) # fails File "/Users/chennan/Desktop/2019/env/lib/python3.6/site-packages/enforce/decorators.py", line 104, in universal _args, _kwargs, _ = enforcer.validate_inputs(parameters) File "/Users/chennan/Desktop/2019/env/lib/python3.6/site-packages/enforce/enforcers.py", line 86, in validate_inputs raise RuntimeTypeError(exception_text) enforce.exceptions.RuntimeTypeError: The following runtime type errors were encountered: Argument 'text' was not of type <class 'str'>. Actual type was int.
使用@表示矩阵的乘法
下面我们实现一个最简单的ML模型——l2正则化线性回归(又称岭回归)
# l2-regularized linear regression: || AX - y ||^2 + alpha * ||x||^2 -> min # Python 2 X = np.linalg.inv(np.dot(A.T, A) + alpha * np.eye(A.shape[1])).dot(A.T.dot(y)) # Python 3 X = np.linalg.inv(A.T @ A + alpha * np.eye(A.shape[1])) @ (A.T @ y)
使用@符号,整个代码变得更可读和方便移植到其他科学计算相关的库,如numpy, cupy, pytorch, tensorflow等。
**通配符的使用
在 Python2 中,递归查找文件不是件容易的事情,即使是使用glob库,但是从 Python3.5 开始,可以通过**通配符简单的实现。
import glob # Python 2 found_images = ( glob.glob('/path/*.jpg') + glob.glob('/path/*/*.jpg') + glob.glob('/path/*/*/*.jpg') + glob.glob('/path/*/*/*/*.jpg') + glob.glob('/path/*/*/*/*/*.jpg')) # Python 3 found_images = glob.glob('/path/**/*.jpg', recursive=True)
更好的路径写法是上面提到的 pathlib ,我们可以把代码进一步改写成如下形式。
# Python 3 import pathlib import glob found_images = pathlib.Path('/path/').glob('**/*.jpg')
Print函数
虽然 Python3 的 print 加了一对括号,但是这并不影响它的优点。
使用文件描述符的形式将文件写入
print >>sys.stderr, "critical error" # Python 2 print("critical error", file=sys.stderr) # Python 3
不使用 str.join 拼接字符串
# Python 3 print(*array, sep=' ') print(batch, epoch, loss, accuracy, time, sep=' ')
重新定义 print 方法的行为
既然 Python3 中的 print 是一个函数,我们就可以对其进行改写。
# Python 3 _print = print # store the original print function def print(*args, **kargs): pass # do something useful, e.g. store output to some file
注意:在 Jupyter 中,最好将每个输出记录到一个单独的文件中(跟踪断开连接后发生的情况),这样就可以覆盖 print 了。
@contextlib.contextmanager def replace_print(): import builtins _print = print # saving old print function # or use some other function here builtins.print = lambda *args, **kwargs: _print('new printing', *args, **kwargs) yield builtins.print = _print with replace_print(): <code here will invoke other print function>
虽然上面这段代码也能达到重写 print 函数的目的,但是不推荐使用。
print 可以参与列表理解和其他语言构造
# Python 3 result = process(x) if is_valid(x) else print('invalid item: ', x)
数字文字中的下划线(千位分隔符)
在 PEP-515 中引入了在数字中加入下划线。在 Python3 中,下划线可用于整数,浮点和复数,这个下划线起到一个分组的作用
# grouping decimal numbers by thousands one_million = 1_000_000 # grouping hexadecimal addresses by words addr = 0xCAFE_F00D # grouping bits into nibbles in a binary literal flags = 0b_0011_1111_0100_1110 # same, for string conversions flags = int('0b_1111_0000', 2)
也就是说10000,你可以写成10_000这种形式。
简单可看的字符串格式化f-string
Python2提供的字符串格式化系统还是不够好,太冗长麻烦,通常我们会写这样一段代码来输出日志信息:
# Python 2 print '{batch:3} {epoch:3} / {total_epochs:3} accuracy: {acc_mean:0.4f}±{acc_std:0.4f} time: {avg_time:3.2f}'.format( batch=batch, epoch=epoch, total_epochs=total_epochs, acc_mean=numpy.mean(accuracies), acc_std=numpy.std(accuracies), avg_time=time / len(data_batch) ) # Python 2 (too error-prone during fast modifications, please avoid): print '{:3} {:3} / {:3} accuracy: {:0.4f}±{:0.4f} time: {:3.2f}'.format( batch, epoch, total_epochs, numpy.mean(accuracies), numpy.std(accuracies), time / len(data_batch) )
输出结果为
120 12 / 300 accuracy: 0.8180±0.4649 time: 56.60
在 Python3.6 中引入了 f-string (格式化字符串)
print(f'{batch:3} {epoch:3} / {total_epochs:3} accuracy: {numpy.mean(accuracies):0.4f}±{numpy.std(accuracies):0.4f} time: {time / len(data_batch):3.2f}')
关于 f-string 的用法可以看我在b站的视频[https://www.bilibili.com/video/av31608754]
'/'和'//'在数学运算中有着明显的区别
对于数据科学来说,这无疑是一个方便的改变
data = pandas.read_csv('timing.csv') velocity = data['distance'] / data['time']
Python2 中的结果取决于“时间”和“距离”(例如,以米和秒为单位)是否存储为整数。在python3中,这两种情况下的结果都是正确的,因为除法的结果是浮点数。
另一个例子是 floor 除法,它现在是一个显式操作
n_gifts = money // gift_price # correct for int and float arguments nutshell >>> from operator import truediv, floordiv >>> truediv.__doc__, floordiv.__doc__ ('truediv(a, b) -- Same as a / b.', 'floordiv(a, b) -- Same as a // b.') >>> (3 / 2), (3 // 2), (3.0 // 2.0) (1.5, 1, 1.0)
值得注意的是,这种规则既适用于内置类型,也适用于数据包提供的自定义类型(例如 numpy 或pandas)。
严格的顺序
下面的这些比较方式在 Python3 中都属于合法的。
3 < '3' 2 < None (3, 4) < (3, None) (4, 5) < [4, 5]
对于下面这种不管是2还是3都是不合法的
(4, 5) == [4, 5]
如果对不同的类型进行排序
sorted([2, '1', 3])
虽然上面的写法在 Python2 中会得到结果 [2, 3, '1'],但是在 Python3 中上面的写法是不被允许的。
检查对象为 None 的合理方案
if a is not None: pass if a: # WRONG check for None pass NLP Unicode问题 s = '您好' print(len(s)) print(s[:2])
输出内容
Python 2: 6 Python 3: 2
您好.
还有下面的运算
x = u'со' x += 'co' # ok x += 'со' # fail
Python2 失败了,Python3 正常工作(因为我在字符串中使用了俄文字母)。
在 Python3 中,字符串都是 unicode 编码,所以对于非英语文本处理起来更方便。
一些其他操作
'a' < type < u'a' # Python 2: True 'a' < u'a' # Python 2: False
再比如
from collections import Counter Counter('Möbelstück')
在 Python2 中
Counter({'Ã': 2, 'b': 1, 'e': 1, 'c': 1, 'k': 1, 'M': 1, 'l': 1, 's': 1, 't': 1, '¶': 1, '¼': 1})
在 Python3 中
Counter({'M': 1, 'ö': 1, 'b': 1, 'e': 1, 'l': 1, 's': 1, 't': 1, 'ü': 1, 'c': 1, 'k': 1})
虽然可以在 Python2 中正确地处理这些结果,但是在 Python3 中看起来结果更加友好。
保留了字典和**kwargs的顺序
在CPython3.6+ 中,默认情况下,dict 的行为类似于 OrderedDict ,都会自动排序(这在Python3.7+ 中得到保证)。同时在字典生成式(以及其他操作,例如在 json 序列化/反序列化期间)都保留了顺序。
import json x = {str(i):i for i in range(5)} json.loads(json.dumps(x)) # Python 2 {u'1': 1, u'0': 0, u'3': 3, u'2': 2, u'4': 4} # Python 3 {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4}
这同样适用于**kwargs(在Python 3.6+中),它们的顺序与参数中出现的顺序相同。当涉及到数据管道时,顺序是至关重要的,以前我们必须以一种繁琐的方式编写它
from torch import nn # Python 2 model = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(1,20,5)), ('relu1', nn.ReLU()), ('conv2', nn.Conv2d(20,64,5)), ('relu2', nn.ReLU()) ]))
而在 Python3.6 以后你可以这么操作
# Python 3.6+, how it *can* be done, not supported right now in pytorch model = nn.Sequential( conv1=nn.Conv2d(1,20,5), relu1=nn.ReLU(), conv2=nn.Conv2d(20,64,5), relu2=nn.ReLU()) )
可迭代对象拆包
类似于元组和列表的拆包,具体看下面的代码例子。
# handy when amount of additional stored info may vary between experiments, but the same code can be used in all cases model_paramteres, optimizer_parameters, *other_params = load(checkpoint_name) # picking two last values from a sequence *prev, next_to_last, last = values_history # This also works with any iterables, so if you have a function that yields e.g. qualities, # below is a simple way to take only last two values from a list *prev, next_to_last, last = iter_train(args)
提供了更高性能的pickle
Python2
import cPickle as pickle import numpy print len(pickle.dumps(numpy.random.normal(size=[1000, 1000]))) # result: 23691675 Python3 import pickle import numpy len(pickle.dumps(numpy.random.normal(size=[1000, 1000]))) # result: 8000162
空间少了三倍。而且要快得多。实际上,使用 protocol=2 参数可以实现类似的压缩(但不是速度),但是开发人员通常忽略
这个选项(或者根本不知道)。
注意:pickle 不安全(并且不能完全转移),所以不要 unpickle 从不受信任或未经身份验证的来源收到的数据。
更安全的列表推导
labels = <initial_value> predictions = [model.predict(data) for data, labels in dataset] # labels are overwritten in Python 2 # labels are not affected by comprehension in Python
更简易的super()
在python2中 super 相关的代码是经常容易写错的。
# Python 2 class MySubClass(MySuperClass): def __init__(self, name, **options): super(MySubClass, self).__init__(name='subclass', **options) # Python 3 class MySubClass(MySuperClass): def __init__(self, name, **options): super().__init__(name='subclass', **options)
这一点Python3得到了很大的优化,新的 super() 可以不再传递参数。
同时在调用顺序上也不一样。
IDE能够给出更好的提示
使用Java、c#等语言进行编程最有趣的地方是IDE可以提供很好的建议,因为在执行程序之前,每个标识符的类型都是已知的。
在python中这很难实现,但是注释会帮助你
这是一个带有变量注释的 PyCharm 提示示例。即使在使用的函数没有注释的情况下(例如,由于向后兼容性),也可以使用这种方法。
Multiple unpacking
如何合并两个字典
x = dict(a=1, b=2) y = dict(b=3, d=4) # Python 3.5+ z = {**x, **y} # z = {'a': 1, 'b': 3, 'd': 4}, note that value for `b` is taken from the latter dict.
我在b站同样发布了相关的视频[https://www.bilibili.com/video/av50376841]
同样的方法也适用于列表、元组和集合(a、b、c是任何迭代器)
[*a, *b, *c] # list, concatenating (*a, *b, *c) # tuple, concatenating {*a, *b, *c} # set, union
函数还支持*arg和**kwarg的多重解包
# Python 3.5+ do_something(**{**default_settings, **custom_settings}) # Also possible, this code also checks there is no intersection between keys of dictionaries do_something(**first_args, **second_args) Data classes
Python 3.7引入了Dataclass类,它适合存储数据对象。数据对象是什么?下面列出这种对象类型的几项特征,虽然不全面:
它们存储数据并表示某种数据类型,例如:数字。对于熟悉ORM的朋友来说),数据模型实例就是一个数据对象。它代表了一种特定的实体。它所具有的属性定义或表示了该实体。
它们可以与同一类型的其他对象进行比较。例如:大于、小于或等于。
当然还有更多的特性,下面的这个例子可以很好的替代namedtuple的功能。
dataclass装饰器实现了
@dataclass class Person: name: str age: int @dataclass class Coder(Person): preferred_language: str = 'Python 3'
几个魔法函数方法的功能(__init__,__repr__,__le__,__eq__)
关于数据类有以下几个特性:
数据类可以是可变的,也可以是不可变的
支持字段的默认值
可被其他类继承
数据类可以定义新的方法并覆盖现有的方法
初始化后处理(例如验证一致性)
更多内容可以参考官方文档。
自定义对模块属性的访问
在Python中,可以用getattr和dir控制任何对象的属性访问和提示。因为python3.7,你也可以对模块这样做。
一个自然的例子是实现张量库的随机子模块,这通常是跳过初始化和传递随机状态对象的快捷方式。numpy的实现如下:
# nprandom.py import numpy __random_state = numpy.random.RandomState() def __getattr__(name): return getattr(__random_state, name) def __dir__(): return dir(__random_state) def seed(seed): __random_state = numpy.random.RandomState(seed=seed)
也可以这样混合不同对象/子模块的功能。与pytorch和cupy中的技巧相比。
除此之外,还可以做以下事情:
使用它来延迟加载子模块。例如,导入tensorflow时会导入所有子模块(和依赖项)。需要大约150兆内存。
在应用编程接口中使用此选项进行折旧
在子模块之间引入运行时路由
内置的断点
在python3.7中可以直接使用breakpoint给代码打断点
# Python 3.7+, not all IDEs support this at the moment foo() breakpoint() bar()
在python3.7以前我们可以通过import pdb的pdb.set_trace()实现相同的功能。
对于远程调试,可尝试将breakpoint()与web-pdb结合使用.
Math模块中的常数
# Python 3 math.inf # Infinite float math.nan # not a number max_quality = -math.inf # no more magic initial values! for model in trained_models: max_quality = max(max_quality, compute_quality(model, data))
整数类型只有int
Python 2提供了两种基本的整数类型,一种是int(64位有符号整数)一种是long,使用起来非常容易混乱,而在python3中只提供了int类型这一种。
isinstance(x, numbers.Integral) # Python 2, the canonical way isinstance(x, (long, int)) # Python 2 isinstance(x, int) # Python 3, easier to remember
在python3中同样的也可以应用于其他整数类型,如numpy.int32、numpy.int64,但其他类型不适用。
感谢你能够认真阅读完这篇文章,希望小编分享的“怎么愉快地迁移到Python 3”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。