温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用Opencv+Python实现图像运动模糊和高斯模糊

发布时间:2021-04-07 10:40:49 来源:亿速云 阅读:684 作者:小新 栏目:开发技术

这篇文章给大家分享的是有关如何使用Opencv+Python实现图像运动模糊和高斯模糊的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

运动模糊:由于相机和物体之间的相对运动造成的模糊,又称为动态模糊

Opencv+Python实现运动模糊,主要用到的函数是cv2.filter2D()

# coding: utf-8
import numpy as np
import cv2
def motion_blur(image, degree=12, angle=45):
  image = np.array(image)
  # 这里生成任意角度的运动模糊kernel的矩阵, degree越大,模糊程度越高
  M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1)
  motion_blur_kernel = np.diag(np.ones(degree))
  motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree))
  motion_blur_kernel = motion_blur_kernel / degree
  blurred = cv2.filter2D(image, -1, motion_blur_kernel)
  # convert to uint8
  cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
  blurred = np.array(blurred, dtype=np.uint8)
  return blurred
img = cv2.imread('./9.jpg')
img_ = motion_blur(img)
cv2.imshow('Source image',img)
cv2.imshow('blur image',img_)
cv2.waitKey()

原图:

如何使用Opencv+Python实现图像运动模糊和高斯模糊

运动模糊效果:

如何使用Opencv+Python实现图像运动模糊和高斯模糊

高斯模糊:图像与二维高斯分布的概率密度函数做卷积,模糊图像细节

Opencv+Python实现高斯模糊,主要用到的函数是cv2.GaussianBlur():

# coding: utf-8
import numpy as np
import cv2
img = cv2.imread('./9.jpg')
img_ = cv2.GaussianBlur(img, ksize=(9, 9), sigmaX=0, sigmaY=0)
cv2.imshow('Source image',img)
cv2.imshow('blur image',img_)
cv2.waitKey()

高斯模糊效果:

如何使用Opencv+Python实现图像运动模糊和高斯模糊

感谢各位的阅读!关于“如何使用Opencv+Python实现图像运动模糊和高斯模糊”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI