温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》
  • 首页 > 
  • 教程 > 
  • 开发技术 > 
  • Python计算库numpy进行方差/标准方差/样本标准方差/协方差的示例分析

Python计算库numpy进行方差/标准方差/样本标准方差/协方差的示例分析

发布时间:2021-08-11 11:22:42 来源:亿速云 阅读:1648 作者:小新 栏目:开发技术

这篇文章将为大家详细讲解有关Python计算库numpy进行方差/标准方差/样本标准方差/协方差的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

variance: 方差

方差(Variance)是概率论中最基础的概念之一,它是由统计学天才罗纳德·费雪1918年最早所提出。用于衡量数据离散程度,因为它能体现变量与其数学期望(均值)之间的偏离程度。具有相同均值的数据,而标准差可能不同,而通过标准差的大小则能更好地反映出数据的偏离度。

计算:一组数据1,2,3,4,其方差应该是多少?

计算如下:

均值=(1+2+3+4)/4=2.5
方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/4 = (2.25+0.25+0.25+2.25)/4 = 1.25

python的numpy库中使用var函数即可求解,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-5.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("variance of [1,2,3,4]:", np.var(arr))
liumiaocn:tmp liumiao$ python np-5.py 
('variance of [1,2,3,4]:', 1.25)
liumiaocn:tmp liumiao$

standard deviation: 标准偏差

标准偏差=方差的开放,所以:

计算: 一组数据1,2,3,4,其标准偏差应该是多少?

计算就很简单了,对其求出的方差1.25进行开方运算即可得到大约1.118

可以使用numpy库中的std函数就可以非常简单的求解,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-6.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("variance of [1,2,3,4]:", np.var(arr))
print("sqrt of variance [1,2,3,4]:",np.sqrt(np.var(arr)))
print("standard deviation: np.std()", np.std(arr))
liumiaocn:tmp liumiao$ python np-6.py 
('variance of [1,2,3,4]:', 1.25)
('sqrt of variance [1,2,3,4]:', 1.118033988749895)
('standard deviation: np.std()', 1.118033988749895)
liumiaocn:tmp liumiao$

sample standard deviation: 样本标准偏差

标准偏差是对总体样本进行求解,如果有取样,则需要使用样本标准偏差,它也是一个求开方的运算,但是对象不是方差,方差使用是各个数据与数学均值的差的求和的均值,简单来说除的对象是N,样本偏差则是N-1。

计算: 一组数据1,2,3,4,其样本标准偏差应该是多少?
计算如下:
均值=(1+2+3+4)/4=2.5
样本标准偏差的方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/3 = (2.25+0.25+0.25+2.25)/4 = 5/3
所以对5/3开方运算所得到的就是样本标准偏差为:1.29

同样适用numpy的std函数就可以做到这点,只需要将其一个Optional的参数设定为1即可,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-7.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("sample standard deviation: np.std()", np.std(arr, ddof=1))
liumiaocn:tmp liumiao$ python np-7.py 
('sample standard deviation: np.std()', 1.2909944487358056)
liumiaocn:tmp liumiao$

注意:matlab中的std实际指的是样本标准偏差,这点需要注意,如果你的代码从matlab上copy过来,请注意其实际的意义是标准偏差还是样本标准偏差

Covariance:协方差

协方差和方差较为接近,区别在于除数为N-1。

计算: 一组数据1,2,3,4,其协方差应该是多少?

计算如下:

均值=(1+2+3+4)/4=2.5
方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/(4-1) = (2.25+0.25+0.25+2.25)/3 = 1.66667

使用numpy的cov函数即可简单求出,代码和执行结果如下:

liumiaocn:tmp liumiao$ cat np-8.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("Covariance: np.cov()", np.cov(arr))
liumiaocn:tmp liumiao$ python np-8.py 
('Covariance: np.cov()', array(1.66666667))
liumiaocn:tmp liumiao$

关于“Python计算库numpy进行方差/标准方差/样本标准方差/协方差的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI