温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么在Python中实现一个神经网络算法

发布时间:2021-04-30 16:03:22 来源:亿速云 阅读:191 作者:Leah 栏目:开发技术

怎么在Python中实现一个神经网络算法?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

python的五大特点是什么

python的五大特点:1.简单易学,开发程序时,专注的是解决问题,而不是搞明白语言本身。2.面向对象,与其他主要的语言如C++和Java相比, Python以一种非常强大又简单的方式实现面向对象编程。3.可移植性,Python程序无需修改就可以在各种平台上运行。4.解释性,Python语言写的程序不需要编译成二进制代码,可以直接从源代码运行程序。5.开源,Python是 FLOSS(自由/开放源码软件)之一。

python实现二层神经网络

包括输入层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
#sigmoid function
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 return 1/(1+np.exp(-x))
#input dataset
x = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
#init weight value
syn0 = 2*np.random.random((3,1))-1
print "亿速云测试结果:"
for iter in xrange(100000):
 l0 = x       #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the output layer
 l1_error = y-l1
 l1_delta = l1_error*nonlin(l1,True)
 syn0 += np.dot(l0.T, l1_delta)
print "outout after Training:"
print l1

这里,

l0:输入层
l1:输出层
syn0:初始权值
l1_error:误差
l1_delta:误差校正系数
func nonlin:sigmoid函数

这里迭代次数为100时,预测结果为

怎么在Python中实现一个神经网络算法

迭代次数为1000时,预测结果为:

怎么在Python中实现一个神经网络算法

迭代次数为10000,预测结果为:

怎么在Python中实现一个神经网络算法

迭代次数为100000,预测结果为:

怎么在Python中实现一个神经网络算法

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

# -*- coding:utf-8 -*-
#! python2
import numpy as np
def nonlin(x, deriv = False):
 if(deriv == True):
  return x*(1-x)
 else:
  return 1/(1+np.exp(-x))
#input dataset
X = np.array([[0,0,1],
    [0,1,1],
    [1,0,1],
    [1,1,1]])
#output dataset
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value
print "亿速云测试结果:"
for j in range(60000):
 l0 = X      #the first layer,and the input layer
 l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer
 l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer
 l2_error = y-l2  #the hidden-output layer error
 if(j%10000) == 0:
  print "Error:"+str(np.mean(l2_error))
 l2_delta = l2_error*nonlin(l2,deriv = True)
 l1_error = l2_delta.dot(syn1.T)  #the first-hidden layer error
 l1_delta = l1_error*nonlin(l1,deriv = True)
 syn1 += l1.T.dot(l2_delta)
 syn0 += l0.T.dot(l1_delta)
print "outout after Training:"
print l2

运行结果:

怎么在Python中实现一个神经网络算法

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI