这篇文章主要介绍Spring中如何借助Redis设计一个简单访问计数器,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
I. 设计
一个简单的访问计数器,主要利用redis的hash结构,对应的存储结构如下:
存储结构比较简单,为了扩展,每个应用(or站点)对应一个APP,然后根据path路径进行分页统计,最后有一个特殊的用于统计全站的访问计数
II. 实现
主要就是利用Redis的hash结构,然后实现数据统计,并没有太多的难度,Spring环境下搭建redis环境可以参考:
Spring之RedisTemplate配置与使用
1. Redis封装类
针对几个常用的做了简单的封装,直接使用RedisTemplate的excute方法进行的操作,当然也是可以使用 template.opsForValue() 等便捷方式,这里采用JSON方式进行对象的序列化和反序列化
public class QuickRedisClient { private static final Charset CODE = Charset.forName("UTF-8"); private static RedisTemplate<String, String> template; public static void register(RedisTemplate<String, String> template) { QuickRedisClient.template = template; } public static void nullCheck(Object... args) { for (Object obj : args) { if (obj == null) { throw new IllegalArgumentException("redis argument can not be null!"); } } } public static byte[] toBytes(String key) { nullCheck(key); return key.getBytes(CODE); } public static byte[][] toBytes(List<String> keys) { byte[][] bytes = new byte[keys.size()][]; int index = 0; for (String key : keys) { bytes[index++] = toBytes(key); } return bytes; } public static String getStr(String key) { return template.execute((RedisCallback<String>) con -> { byte[] val = con.get(toBytes(key)); return val == null ? null : new String(val); }); } public static void putStr(String key, String value) { template.execute((RedisCallback<Void>) con -> { con.set(toBytes(key), toBytes(value)); return null; }); } public static Long incr(String key, long add) { return template.execute((RedisCallback<Long>) con -> { Long record = con.incrBy(toBytes(key), add); return record == null ? 0L : record; }); } public static Long hIncr(String key, String field, long add) { return template.execute((RedisCallback<Long>) con -> { Long record = con.hIncrBy(toBytes(key), toBytes(field), add); return record == null ? 0L : record; }); } public static <T> T hGet(String key, String field, Class<T> clz) { return template.execute((RedisCallback<T>) con -> { byte[] records = con.hGet(toBytes(key), toBytes(field)); if (records == null) { return null; } return JSON.parseObject(records, clz); }); } public static <T> Map<String, T> hMGet(String key, List<String> fields, Class<T> clz) { List<byte[]> list = template.execute((RedisCallback<List<byte[]>>) con -> con.hMGet(toBytes(key), toBytes(fields))); if (CollectionUtils.isEmpty(list)) { return Collections.emptyMap(); } Map<String, T> result = new HashMap<>(); for (int i = 0; i < fields.size(); i++) { if (list.get(i) == null) { continue; } result.put(fields.get(i), JSON.parseObject(list.get(i), clz)); } return result; } }
对应的配置类
package com.git.hui.story.cache.redis; import com.git.hui.story.cache.redis.serializer.DefaultStrSerializer; import org.springframework.cache.CacheManager; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.context.annotation.PropertySource; import org.springframework.core.env.Environment; import org.springframework.data.redis.cache.RedisCacheManager; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.data.redis.connection.RedisPassword; import org.springframework.data.redis.connection.lettuce.LettuceConnectionFactory; import org.springframework.data.redis.core.RedisTemplate; /** * Created by yihui in 18:45 18/6/11. */ @Configuration @PropertySource(value = "classpath:application.yml") public class RedisConf { private final Environment environment; public RedisConf(Environment environment) { this.environment = environment; } @Bean public CacheManager cacheManager() { return RedisCacheManager.RedisCacheManagerBuilder.fromConnectionFactory(redisConnectionFactory()).build(); } @Bean public RedisTemplate<String, String> redisTemplate(RedisConnectionFactory redisConnectionFactory) { RedisTemplate<String, String> redisTemplate = new RedisTemplate<>(); redisTemplate.setConnectionFactory(redisConnectionFactory); DefaultStrSerializer serializer = new DefaultStrSerializer(); redisTemplate.setValueSerializer(serializer); redisTemplate.setHashValueSerializer(serializer); redisTemplate.setKeySerializer(serializer); redisTemplate.setHashKeySerializer(serializer); redisTemplate.afterPropertiesSet(); QuickRedisClient.register(redisTemplate); return redisTemplate; } @Bean public RedisConnectionFactory redisConnectionFactory() { LettuceConnectionFactory fac = new LettuceConnectionFactory(); fac.getStandaloneConfiguration().setHostName(environment.getProperty("spring.redis.host")); fac.getStandaloneConfiguration().setPort(Integer.parseInt(environment.getProperty("spring.redis.port"))); fac.getStandaloneConfiguration() .setPassword(RedisPassword.of(environment.getProperty("spring.redis.password"))); fac.afterPropertiesSet(); return fac; } }
2. Controller 支持
首先是定义请求参数:
@Data public class WebCountReqDO implements Serializable { private String appKey; private String referer; }
其次是实现Controller接口,稍稍注意下,根据path进行计数的逻辑:
如果请求参数显示指定了referer参数,则用传入的参数进行统计
如果没有显示指定referer,则根据header获取referer
解析referer,分别对path和host进行统计+1,这样站点的统计计数就是根据host来的,而页面的统计计数则是根据path路径来的
@Slf4j @RestController @RequestMapping(path = "/count") public class WebCountController { @RequestMapping(path = "cc", method = {RequestMethod.GET}) public ResponseWrapper<CountDTO> addCount(WebCountReqDO webCountReqDO) { String appKey = webCountReqDO.getAppKey(); if (StringUtils.isBlank(appKey)) { return ResponseWrapper.errorReturnMix(Status.StatusEnum.ILLEGAL_PARAMS_MIX, "请指定APPKEY!"); } String referer = ReqInfoContext.getReqInfo().getReferer(); if (StringUtils.isBlank(referer)) { referer = webCountReqDO.getReferer(); } if (StringUtils.isBlank(referer)) { return ResponseWrapper.errorReturnMix(Status.StatusEnum.FAIL_MIX, "无法获取请求referer!"); } return ResponseWrapper.successReturn(doUpdateCnt(appKey, referer)); } private CountDTO doUpdateCnt(String appKey, String referer) { try { if (!referer.startsWith("http")) { referer = "https://" + referer; } URI uri = new URI(referer); String host = uri.getHost(); String path = uri.getPath(); long count = QuickRedisClient.hIncr(appKey, path, 1); long total = QuickRedisClient.hIncr(appKey, host, 1); return new CountDTO(count, total); } catch (Exception e) { log.error("get referer path error! referer: {}, e: {}", referer, e); return new CountDTO(1L, 1L); } } }
以上是“Spring中如何借助Redis设计一个简单访问计数器”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。