这篇文章主要介绍了Java编程如何实现轨迹压缩算法开放窗口,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
轨迹压缩算法
场景描述
给定一个GPS数据记录文件,每条记录包含经度和维度两个坐标字段,根据距离阈值压缩记录,将过滤后的所有记录的经纬度坐标构成一条轨迹
算法描述
这种算法的用处还是相当广泛的。
轨迹压缩算法分为两大类,分别是无损压缩和有损压缩,无损压缩算法主要包括哈夫曼编码,有损压缩算法又分为批处理方式和在线数据压缩方式,其中批处理方式又包括DP(Douglas-Peucker)算法、TD-TR(Top-Down Time-Ratio)算法和Bellman算法,在线数据压缩方式又包括滑动窗口、开放窗口、基于安全区域的方法等。
大家也可参考这篇文章:《Java编程实现轨迹压缩之Douglas-Peucker算法详细代码》
代码实现
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Point;
import java.awt.Toolkit;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.io.RandomAccessFile;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Iterator;
import javax.swing.JFrame;
import javax.swing.JPanel;
public class TrajectoryCom {
public static void main(String[] args) throws Exception{
//阈值定义
double maxDistanceError = 30;
/*
* 文件读取
* */
//存放从文件读取的位置点的信息列表
ArrayList<enpoint> ENPList = new ArrayList<enpoint>();
//源数据文件的地址 建立文件对象
//这里是需要更改的地方 改你源文件的存放地址 记住如果地址中含"\",记得再加一个"\",原因"\"是转义符号
//这里可以写成C:/Users/Administrator/Desktop/11.6/2007-10-14-GPS.log
File sourceFile = new File("./2007-10-14-GPS.log");
//调用文件读取函数 读取文件数据
ENPList = getENPointFromFile(sourceFile);
//这里是测试 有没有读到里面 看看列表里的数据个数 交作业的时候记得注释掉
System.out.println(ENPList.size());
/*
* 数据处理
* 方法:开放窗口轨迹压缩法
* */
//存放目标点的集合
ArrayList<enpoint> rePointList = new ArrayList<enpoint>();
rePointList = openWindowTra(ENPList,maxDistanceError);
System.out.println(rePointList.size());
/*
* 写入目标文件
* */
File targetFile = new File("./2007-10-14-GPSResult.log");
writeTestPointToFile(targetFile,rePointList);
/*
* 压缩率计算
*/
double cpL = (double)rePointList.size() / (double)ENPList.size() * 100;
DecimalFormat df = new DecimalFormat("0.000000");
System.out.println("压缩率:"+ df.format(cpL) + "%");
/*
* 计算平均距离误差
* */
double aveDisErr = getMeanDistError(ENPList,rePointList);
System.out.println(aveDisErr);
/*
* 画线形成对比图
* */
//generateImage(ENPList,rePointList);
}
/*
* 从提供的文件信息里提取位置点
* 并将每个点的坐标数值调用转换函数存到列表里
* 函数返回一个 存放所有位置点 的集合
*/
public static ArrayList<enpoint> getENPointFromFile(File fGPS)throws Exception{
ArrayList<enpoint> pGPSArray = new ArrayList<enpoint>();
if(fGPS.exists()&&fGPS.isFile()){
InputStreamReader read = new InputStreamReader(new FileInputStream(fGPS));
//输入流初始化
BufferedReader bReader = new BufferedReader(read);
//缓存读取初始化
String str;
String[] strGPS;
int i = 0;
while((str = bReader.readLine())!=null){
//每次读一行
strGPS = str.split(" ");
ENPoint p = new ENPoint();
p.id = i;
i++;
p.pe = (dfTodu(strGPS[3]));
p.pn = (dfTodu(strGPS[5]));
pGPSArray.add(p);
}
bReader.close();
}
return pGPSArray;
}
/**
* 函数功能:将原始经纬度坐标数据转换成度
* 获取的经纬度数据为一个字符串
*/
public static double dfTodu(String str){
int indexD = str.indexOf('.');
//获取 . 字符所在的位置
String strM = str.substring(0,indexD-2);
//整数部分
String strN = str.substring(indexD-2);
//小数部分
double d = double.parsedouble(strM)+double.parsedouble(strN)/60;
return d;
}
/*
* 开放窗口方法实现
* 返回一个压缩后的位置列表
* 列表每条数据存放ID、点的坐标
*
* 算法描述:
* 初始点和浮动点计算出投影点,判断投影点和轨迹点的距离与阈值 若存在距离大于阈值
* 则初始点放入targetList,浮动点向前检索一点作为新的初始点,新的初始点向后检索第二个作为新的浮动点 这里存在判断 即新的初始点位置+1是不是等于列表长度 这里决定了浮动点的选取
* 如此处理至终点
* */
public static ArrayList<enpoint> openWindowTra(ArrayList<enpoint> sourceList,double maxDis){
ArrayList<enpoint> targetList = new ArrayList<enpoint>();
//定义初始点位置 最开始初始点位置为0
int startPoint = 0;
//定义浮动点位置 最开始初始点位置2
int floatPoint = 2;
//定义当前轨迹点位置 最开始初始点位置为1
int nowPoint = 1;
int len = sourceList.size();
//存放所有窗口内的点的信息集合
ArrayList<enpoint> listPoint = new ArrayList<enpoint>();
listPoint.add(sourceList.get(nowPoint));
//浮动点位置决定循环
while(true){
//标志 用来控制判断是否进行窗口内轨迹点更新
Boolean flag = false;
//计算并判断窗口内所有点和投影点的距离是否大于阈值
for (ENPoint point:listPoint){
double disOfTwo = getDistance(sourceList.get(startPoint),sourceList.get(floatPoint),point);
if(disOfTwo >= 30){
flag = true;
break;
}
}
if(flag){
//窗口内点距离都大于阈值
//初始点加到目标列表
targetList.add(sourceList.get(startPoint));
//初始点变化
startPoint = floatPoint - 1;
//浮动点变化
floatPoint += 1;
if(floatPoint >= len){
targetList.add(sourceList.get(floatPoint-1));
break;
}
//窗口内点变化
listPoint.clear();
//System.out.println(listPoint.size());
listPoint.add(sourceList.get(startPoint+1));
} else{
//距离小于阈值的情况
//初始点不变
//当前窗口集合加入当前浮动点
listPoint.add(sourceList.get(floatPoint));
//浮动点后移一位
floatPoint += 1;
//如果浮动点是终点 且当前窗口点距离都小于阈值 就直接忽略窗口点 直接将终点加入目标点集合
if(floatPoint >= len){
targetList.add(sourceList.get(startPoint));
targetList.add(sourceList.get(floatPoint-1));
break;
}
}
flag = false;
}
return targetList;
}
/*计算投影点到轨迹点的距离
* 入口是初始点A、浮动点B、当前轨迹点C
* 三角形面积公式
*/
public static double getDistance(ENPoint A,ENPoint B,ENPoint C){
double distance = 0;
double a = Math.abs(geoDist(A,B));
double b = Math.abs(geoDist(B,C));
double c = Math.abs(geoDist(A,C));
double p = (a + b + c)/2.0;
double s = Math.sqrt(p * (p-a) * (p-b) * (p-c));
distance = s * 2.0 / a;
return distance;
}
/*
* ArrayList 拷贝函数
* */
/*提供的函数
* 其中计算距离的函数 经过改造得到下面的距离计算方法
* 具体是怎么计算距离的 我也没研究了
* */
public static double geoDist(ENPoint pA,ENPoint pB){
double radLat1 = Rad(pA.pn);
double radLat2 = Rad(pB.pn);
double delta_lon = Rad(pB.pe - pA.pe);
double top_1 = Math.cos(radLat2) * Math.sin(delta_lon);
double top_2 = Math.cos(radLat1) * Math.sin(radLat2) - Math.sin(radLat1) * Math.cos(radLat2) * Math.cos(delta_lon);
double top = Math.sqrt(top_1 * top_1 + top_2 * top_2);
double bottom = Math.sin(radLat1) * Math.sin(radLat2) + Math.cos(radLat1) * Math.cos(radLat2) * Math.cos(delta_lon);
double delta_sigma = Math.atan2(top, bottom);
double distance = delta_sigma * 6378137.0;
return distance;
}
public static double Rad(double d){
return d * Math.PI / 180.0;
}
/*
* 将压缩后的位置点信息写入到文件中
* */
public static void writeTestPointToFile(File outGPSFile,ArrayList<enpoint> pGPSPointFilter)throws Exception{
Iterator<enpoint> iFilter = pGPSPointFilter.iterator();
RandomAccessFile rFilter = new RandomAccessFile(outGPSFile,"rw");
while(iFilter.hasNext()){
ENPoint p = iFilter.next();
String sFilter = p.getResultString();
byte[] bFilter = sFilter.getBytes();
rFilter.write(bFilter);
}
rFilter.close();
}
/**
* 函数功能:求平均距离误差
* 返回平均距离
*/
public static double getMeanDistError(ArrayList<enpoint> pGPSArray,ArrayList<enpoint> pGPSArrayRe){
double sumDist = 0.0;
for (int i=1;i<pgpsarrayre.size();i++){
double="" end="pGPSArrayRe.get(i).id;" int="" j="start+1;j<end;j++){" meandist="sumDist/(pGPSArray.size());" pre="" return="" start="pGPSArrayRe.get(i-1).id;" sumdist=""><pre class="brush:java;">import java.text.DecimalFormat;
public class ENPoint implements Comparable<enpoint>{
public int id;
//点ID
public double pe;
//经度
public double pn;
//维度
public ENPoint(){
}
//空构造函数
public String toString(){
return this.id+"#"+this.pn+","+this.pe;
}
public String getResultString(){
DecimalFormat df = new DecimalFormat("0.000000");
return this.id+"#"+df.format(this.pe)+","+df.format(this.pn)+" \n";
}
@Override
public int compareTo(ENPoint other) {
if(this.id<other.id) else="" return="" this.id="">other.id) return 1; else
return 0;
}
}
感谢你能够认真阅读完这篇文章,希望小编分享的“Java编程如何实现轨迹压缩算法开放窗口”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。