温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

lambda表达式在Java8中的作用有哪些

发布时间:2020-11-23 16:28:24 来源:亿速云 阅读:121 作者:Leah 栏目:编程语言

本篇文章给大家分享的是有关lambda表达式在Java8中的作用有哪些,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

1.关于JSR335

JSR是Java Specification Requests的缩写,意思是Java 规范请求,Java 8 版本的主要改进是 Lambda 项目(JSR 335),其目的是使 Java 更易于为多核处理器编写代码。

2.外部VS内部迭代

以前Java集合是不能够表达内部迭代的,而只提供了一种外部迭代的方式,也就是for或者while循环。

List persons = asList(new Person("Joe"), new Person("Jim"), new Person("John"));
for (Person p : persons) {
 p.setLastName("Doe");
}

上面的例子是我们以前的做法,也就是所谓的外部迭代,循环是固定的顺序循环。在现在多核的时代,如果我们想并行循环,不得不修改以上代码。效率能有多大提升还说定,且会带来一定的风险(线程安全问题等等)。 

要描述内部迭代,我们需要用到Lambda这样的类库,下面利用lambda和Collection.forEach重写上面的循环 

persons.forEach(p->p.setLastName("Doe"));

现在是由jdk 库来控制循环了,我们不需要关心last name是怎么被设置到每一个person对象里面去的,库可以根据运行环境来决定怎么做,并行,乱序或者懒加载方式。这就是内部迭代,客户端将行为p.setLastName当做数据传入api里面。 内部迭代其实和集合的批量操作并没有密切的联系,借助它我们感受到语法表达上的变化。真正有意思的和批量操作相关的是新的流(stream)API。新的java.util.stream包已经添加进JDK 8了。

3.Stream API

流(Stream)仅仅代表着数据流,并没有数据结构,所以他遍历完一次之后便再也无法遍历(这点在编程时候需要注意,不像Collection,遍历多少次里面都还有数据),它的来源可以是Collection、array、io等等。

3.1中间与终点方法

流作用是提供了一种操作大数据接口,让数据操作更容易和更快。它具有过滤、映射以及减少遍历数等方法,这些方法分两种:中间方法和终端方法,“流”抽象天生就该是持续的,中间方法永远返回的是Stream,因此如果我们要获取最终结果的话,必须使用终点操作才能收集流产生的最终结果。区分这两个方法是看他的返回值,如果是Stream则是中间方法,否则是终点方法。

简单介绍下几个中间方法(filter、map)以及终点方法(collect、sum)

3.1.1Filter

在数据流中实现过滤功能是首先我们可以想到的最自然的操作了。Stream接口暴露了一个filter方法,它可以接受表示操作的Predicate实现来使用定义了过滤条件的lambda表达式。

List persons = …
Stream personsOver18 = persons.stream().filter(p -> p.getAge() > 18);//过滤18岁以上的人

3.1.2Map

假使我们现在过滤了一些数据,比如转换对象的时候。Map操作允许我们执行一个Function的实现(Function<T,R>的泛型T,R分别表示执行输入和执行结果),它接受入参并返回。首先,让我们来看看怎样以匿名内部类的方式来描述它:

Stream adult= persons
    .stream()
    .filter(p -> p.getAge() > 18)
    .map(new Function() {
     @Override
     public Adult apply(Person person) {
      return new Adult(person);//将大于18岁的人转为成年人
     }
    });

现在,把上述例子转换成使用lambda表达式的写法:

Stream map = persons.stream()
     .filter(p -> p.getAge() > 18)
     .map(person -> new Adult(person));

3.1.3Count

count方法是一个流的终点方法,可使流的结果最终统计,返回int,比如我们计算一下满足18岁的总人数

int countOfAdult=persons.stream()
      .filter(p -> p.getAge() > 18)
      .map(person -> new Adult(person))
      .count();

3.1.4Collect

collect方法也是一个流的终点方法,可收集最终的结果

List adultList= persons.stream()
      .filter(p -> p.getAge() > 18)
      .map(person -> new Adult(person))
      .collect(Collectors.toList());

或者,如果我们想使用特定的实现类来收集结果:

List adultList = persons
     .stream()
     .filter(p -> p.getAge() > 18)
     .map(person -> new Adult(person))
     .collect(Collectors.toCollection(ArrayList::new));

篇幅有限,其他的中间方法和终点方法就不一一介绍了,看了上面几个例子,大家明白这两种方法的区别即可,后面可根据需求来决定使用。

3.2顺序流与并行流

每个Stream都有两种模式:顺序执行和并行执行。

顺序流:

List <Person> people = list.getStream.collect(Collectors.toList());

并行流:

List <Person> people = list.getStream.parallel().collect(Collectors.toList());

顾名思义,当使用顺序方式去遍历时,每个item读完后再读下一个item。而使用并行去遍历时,数组会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。

3.2.1并行流原理:

List originalList = someData;
split1 = originalList(0, mid);//将数据分小部分
split2 = originalList(mid,end);
new Runnable(split1.process());//小部分执行操作
new Runnable(split2.process());
List revisedList = split1 + split2;//将结果合并

大家对hadoop有稍微了解就知道,里面的 MapReduce  本身就是用于并行处理大数据集的软件框架,其 处理大数据的核心思想就是大而化小,分配到不同机器去运行map,最终通过reduce将所有机器的结果结合起来得到一个最终结果,与MapReduce不同,Stream则是利用多核技术可将大数据通过多核并行处理,而MapReduce则可以分布式的。

3.2.2顺序与并行性能测试对比

如果是多核机器,理论上并行流则会比顺序流快上一倍,下面是测试代码

long t0 = System.nanoTime();

  //初始化一个范围100万整数流,求能被2整除的数字,toArray()是终点方法

  int a[]=IntStream.range(0, 1_000_000).filter(p -> p % 2==0).toArray();

  long t1 = System.nanoTime();

  //和上面功能一样,这里是用并行流来计算

  int b[]=IntStream.range(0, 1_000_000).parallel().filter(p -> p % 2==0).toArray();

  long t2 = System.nanoTime();

  //我本机的结果是serial: 0.06s, parallel 0.02s,证明并行流确实比顺序流快

  System.out.printf("serial: %.2fs, parallel %.2fs%n", (t1 - t0) * 1e-9, (t2 - t1) * 1e-9);

3.3关于Folk/Join框架

应用硬件的并行性在java 7就有了,那就是 java.util.concurrent 包的新增功能之一是一个 fork-join 风格的并行分解框架,同样也很强大高效,有兴趣的同学去研究,这里不详谈了,相比Stream.parallel()这种方式,我更倾向于后者。

以上就是lambda表达式在Java8中的作用有哪些,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI