这篇文章将为大家详细讲解有关python的生成器是什么意思,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
什么是生成器
在Python中,一边循环一边计算的机制,称为生成器:generator。
普通函数用 return 返回一个值,和 Java 等其他语言是一样的,然而在 Python 中还有一种函数,用关键字 yield 来返回值,这种函数叫生成器函数,函数被调用时会返回一个生成器对象,生成器本质上还是一个迭代器,也是用在迭代操作中,因此它有和迭代器一样的特性,唯一的区别在于实现方式上不一样,后者更加简洁
最简单的生成器函数:
>>> def func(n): ... yield n*2 ... >>> func <function func at 0x00000000029F6EB8> >>> g = func(5) >>> g <generator object func at 0x0000000002908630> >>>
func 就是一个生成器函数,调用该函数时返回对象就是生成器 g ,这个生成器对象的行为和迭代器是非常相似的,可以用在 for 循环等场景中。注意 yield 对应的值在函数被调用时不会立刻返回,而是调用next方法时(本质上 for 循环也是调用 next 方法)才返回
>>> g = func(5) >>> next(g) 10 >>> g = func(5) >>> for i in g: ... print(i) ... 10
那为什么要用生成器呢?显然,用生成器在逼格上要比迭代器高几个等级,它没有那么多冗长代码了,而且性能上一样的高效,为什么不用呢?来看看用生成器实现斐波那契数列有多简单。
def fib(n): prev, curr = 0, 1 while n > 0: n -= 1 yield curr prev, curr = curr, curr + prev print([i for i in fib(10)]) #[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
生成器表达式
在前面一期「这样写代码更优雅」的文章里面曾经介绍过列表推导式(list comprehension),生成器表达式与列表推导式长的非常像,但是它俩返回的对象不一样,前者返回生成器对象,后者返回列表对象。
>>> g = (x*2 for x in range(10)) >>> type(g) <type 'generator'> >>> l = [x*2 for x in range(10)] >>> type(l) <type 'list'>
前面已经介绍过生成器的优势,就是迭代海量数据时,显然生成器更合适。
关于python的生成器是什么意思就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。