这篇文章主要介绍Python中常见的陷阱有哪些,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
Python的编码规范基本遵从PEP8准则,使用四个空格作为缩进,避免空格键和tab键混用,善于添加注释,当一行代码写不下时,右括号要放到行首,和变量对齐,导入顺序 标准库、第三方、本地库,各组之间有个空行隔开。通常,Python 旨在成为一门简洁一致的语言,避免发生意外。然而,有些情况可能会给新手们造成困惑。
在这些情况中,有一些虽是有意为之,但还是有潜在风险。还有一些则可以说是语言设计缺陷了。总之,下面列出的这些情况都是些乍一看很不好理解的行为,不过一旦您了解了这些奇怪行为背后的机理,也就基本上能理解了。
可变默认参数
似乎每个 Python 新手都会感到惊讶的一点是 Python 在函数定义中对待可变默认参数的方法。
您所写的
def append_to(element, to=[]): to.append(element) return to
您可能期待的结果
my_list = append_to(12) print my_list my_other_list = append_to(42) print my_other_list
函数每次被调用时,如果不提供第二个参数,就创建一个新的列表。所以结果就应该是:
[12] [42]
实际上的结果
[12] [12, 42]
一旦 完成了函数定义,一个新的列表就创建出来了,而且在随后的每一次函数调用中被使用的都是这个列表。
一旦 完成了函数定义,Python 的默认参数就被赋值了,而且在随后的每一次函数调用中都不会再被默认值重复赋值(就像是在,嗯,Ruby 里那样)。这就意味着如果您使用了一个可变默认参数,并且改变了它,您也会且 将会 在未来的所有函数调用中改变这同一个参数对象。
您实际上应该做的
使用一个默认值来表示我们并不想给这个参数赋值,从而每次在函数被调用时我们都创建一个新的对象。(None 作为默认值通常是个好选择)。
def append_to(element, to=None): if to is None: to = [] to.append(element) return to
可别忘了,您所传递的第二个参数仍应该是个 列表 对象。
利用好『缺陷』
有时你可以专门 利用(或者说特地使用)这种行为来维护函数调用间的状态。这通常用于编写缓存函数。
延迟绑定闭包
另一个常见的困惑是 Python 在闭包(或在周围全局作用域)中绑定变量的方式。
当你写下
def create_multipliers(): return [lambda x : i * x for i in range(5)]
你期望发生
for multiplier in create_multipliers(): print multiplier(2)
一个包含五个函数的列表,每个函数有它们自己的封闭变量 i 乘以它们的参数,得到:
0 2 4 6 8
而事实是:
8 8 8 8 8
五个函数被创建了,它们全都用 4 乘以 x 。
Python 的闭包是 延迟绑定的 。 这意味着闭包中用到的变量的值,是在内部函数被调用时查询得到的。
这里,不论 任何 返回的函数是如何被调用的, i 取的是调用时周围作用域里的值。 当循环完成时, i 的值最终变成了 4。
关于这个陷阱有一个普遍严重的误解,它被认为只针对 Python 的 闭包 lambda 定义方式。 事实上,由 lambda 表达式创建的函数并没什么特别,同样的问题也出现在使用普通的 def 上:
def create_multipliers(): multipliers = [] for i in range(5): def multiplier(x): return i * x multipliers.append(multiplier) return multipliers
以上正确的做法应该是:
def create_multipliers(): return [lambda x, i=i : i * x for i in range(5)]
或者,使用 functools.partial 函数:
from functools import partial from operator import mul def create_multipliers(): return [partial(mul, i) for i in range(5)]
有时你就想要闭包有如此表现,延迟绑定在很多情况下是一个很赞的特性。不幸的是,循环创建独立函数是一种会使它们出差错的情况。
字节码(.pyc)文件无处不在!
默认情况下,当你直接执行 Python 脚本文件时,Python 解释器会自动将该文件的字节码版本写入同目录下。 比如, module.pyc。
这些 .pyc 文件不应该被纳入源代码仓库。
理论上,出于性能原因,此行为默认为开启。 没有这些字节码文件, Python 会在每次加载文件时重新生成字节码文件。
禁用字节码(.pyc)文件
幸运的是,生成字节码的过程非常快,在开发代码时不需要担心。
那些文件很讨厌,所以让我们摆脱他们吧!
$ export PYTHONDONTWRITEBYTECODE=1
使用 $PYTHONDONTWRITEBYTECODE 环境变量来命令 Python 不将这些文件写入磁盘, 开发环境将会保持整洁和干净。
我建议在你的 ~/.profile 里设置这个环境变量。
以上是Python中常见的陷阱有哪些的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。