温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

关于pytorch SENet的案例分析

发布时间:2020-06-24 18:05:38 来源:亿速云 阅读:358 作者:清晨 栏目:开发技术

小编给大家分享一下关于pytorch SENet的案例分析,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨方法吧!

我就废话不多说了,大家还是直接看代码吧~

from torch import nn

class SELayer(nn.Module):
 def __init__(self, channel, reduction=16):
  super(SELayer, self).__init__()

  //返回1X1大小的特征图,通道数不变
  self.avg_pool = nn.AdaptiveAvgPool2d(1)
  self.fc = nn.Sequential(
   nn.Linear(channel, channel // reduction, bias=False),
   nn.ReLU(inplace=True),
   nn.Linear(channel // reduction, channel, bias=False),
   nn.Sigmoid()
  )

 def forward(self, x):
  b, c, _, _ = x.size()

  //全局平均池化,batch和channel和原来一样保持不变
  y = self.avg_pool(x).view(b, c)

  //全连接层+池化
  y = self.fc(y).view(b, c, 1, 1)

  //和原特征图相乘
  return x * y.expand_as(x)

补充知识:pytorch 实现 SE Block

论文模块图

关于pytorch SENet的案例分析

代码

import torch.nn as nn
class SE_Block(nn.Module):
 def __init__(self, ch_in, reduction=16):
  super(SE_Block, self).__init__()
  self.avg_pool = nn.AdaptiveAvgPool2d(1)				# 全局自适应池化
  self.fc = nn.Sequential(
   nn.Linear(ch_in, ch_in // reduction, bias=False),
   nn.ReLU(inplace=True),
   nn.Linear(ch_in // reduction, ch_in, bias=False),
   nn.Sigmoid()
  )

 def forward(self, x):
  b, c, _, _ = x.size()
  y = self.avg_pool(x).view(b, c)
  y = self.fc(y).view(b, c, 1, 1)
  return x * y.expand_as(x)

现在还有许多关于SE的变形,但大都大同小异

看完了这篇文章,相信你对关于pytorch SENet的案例分析有了一定的了解,想了解更多相关知识,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI