小编给大家分享一下keras使用神经网络预测销量的方法,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!
keras非常方便。
不解释,直接上实例。
数据格式如下:
序号 天气 是否周末 是否有促销 销量 1 坏 是 是 高 2 坏 是 是 高 3 坏 是 是 高 4 坏 否 是 高 5 坏 是 是 高 6 坏 否 是 高 7 坏 是 否 高 8 好 是 是 高 9 好 是 否 高 10 好 是 是 高 11 好 是 是 高 12 好 是 是 高 13 好 是 是 高 14 坏 是 是 低 15 好 否 是 高 16 好 否 是 高 17 好 否 是 高 18 好 否 是 高 19 好 否 否 高 20 坏 否 否 低 21 坏 否 是 低 22 坏 否 是 低 23 坏 否 是 低 24 坏 否 否 低 ......
代码如下:
#-*- coding: utf-8 -*- #使用神经网络算法预测销量高低 import pandas as pd #参数初始化 inputfile = 'data/sales_data.xls' data = pd.read_excel(inputfile, index_col = u'序号') #导入数据 #数据是类别标签,要将它转换为数据 #用1来表示“好”、“是”、“高”这三个属性,用0来表示“坏”、“否”、“低” data[data == u'好'] = 1 data[data == u'是'] = 1 data[data == u'高'] = 1 data[data != 1] = 0 x = data.iloc[:,:3].as_matrix().astype(int) y = data.iloc[:,3].as_matrix().astype(int) print x from keras.models import Sequential from keras.layers.core import Dense, Activation,Dropout model = Sequential() model.add(Dense(64, input_shape=(3,))) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) #编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary #另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。 #求解方法我们指定用adam,还有sgd、rmsprop等可选 model.fit(x, y, nb_epoch = 1000, batch_size = 10) #训练模型,学习一千次 yp = model.predict_classes(x).reshape(len(y)) #分类预测
10/34 [=======>......................] - ETA: 0s - loss: 0.3723 - acc: 0.8000 34/34 [==============================] - 0s - loss: 0.4470 - acc: 0.7647 Epoch 1000/1000
结果为经过1000轮训练准确率为0.7647.
补充知识:利用Keras搭建神经网络进行回归预测
我就废话不多说了,大家还是直接看代码吧~
from keras.datasets import boston_housing from keras import models from keras import layers (X_train, y_train), (X_test, y_test) = boston_housing.load_data()#加载数据 #对数据进行标准化预处理,方便神经网络更好的学习 mean = X_train.mean(axis=0) X_train -= mean std = X_train.std(axis=0) X_train /= std X_test -= mean X_test /= std #构建神经网络模型 def build_model(): #这里使用Sequential模型 model = models.Sequential() #进行层的搭建,注意第二层往后没有输入形状(input_shape),它可以自动推导出输入的形状等于上一层输出的形状 model.add(layers.Dense(64, activation='relu',input_shape=(X_train.shape[1],))) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(1)) #编译网络 model.compile(optimizer='rmsprop', loss='mse', metrics=['mae']) return model num_epochs = 100 model = build_model() model.fit(X_train, y_train,epochs=num_epochs, batch_size=1, verbose=0) predicts = model.predict(X_test)
在实际操作中可以用自己的数据进行测试,最终预测出的predicts,可以利用回归评价指标和y_test进行模型效果的评价。
看完了这篇文章,相信你对keras使用神经网络预测销量的方法有了一定的了解,想了解更多相关知识,欢迎关注亿速云行业资讯频道,感谢各位的阅读!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。