温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何用pandas划分数据集实现训练集和测试集

发布时间:2020-07-20 13:38:32 来源:亿速云 阅读:1265 作者:小猪 栏目:开发技术

这篇文章主要讲解了如何用pandas划分数据集实现训练集和测试集,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。

1、使用model_select子模块中的train_test_split函数进行划分

数据:使用kaggle上Titanic数据集

划分方法:随机划分

# 导入pandas模块,sklearn中model_select模块
import pandas as pd
from sklearn.model_select import train_test_split
# 读取数据
data = pd.read_csv('.../titanic_dataset/train.csv')
# 将特征划分到 X 中,标签划分到 Y 中
x = data.iloc[:, 2:]
y = data.loc['Survived']
# 使用train_test_split函数划分数据集(训练集占75%,测试集占25%)

x_train, x_test, y_train,y_test = train_test_split(x, y, test_size=0.25, ramdon_state=0)

缺点:1、数据浪费严重,只对部分数据进行了验证

            2、容易过拟合

2、k折交叉验证(kfold)

原理:将数据集划分成n个不相交的子集,每次选择其中一个作为测试集,剩余n-1个子集作为            训练集,共生成 n 组数据

使用方法:sklearn.model_select.KFold(n_splits=5,shuffle=False,random_state=0)

参数说明:n_splits:数据集划分的份数,

                  shuffle:每次划分前是否重新洗牌 ,False表示划分前不洗牌,每次划分结果一样,True表示划分前洗牌,每次划分结果不同

                 random_state:随机种子数

(1)shuffle=False 情况下数据划分情况

# 不洗牌模式下数据划分情况
import numpy as np
from sklearn.model_selection import KFold
x = np.arange(46).reshape(23,2)
kf = KFold(n_splits=5,shuffle=False)
for train_index, test_index in kf.split(x):
  print(train_index,test_index)
[ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22] [0 1 2 3 4]
[ 0 1 2 3 4 10 11 12 13 14 15 16 17 18 19 20 21 22] [5 6 7 8 9]
[ 0 1 2 3 4 5 6 7 8 9 15 16 17 18 19 20 21 22] [10 11 12 13 14]
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 20 21 22] [15 16 17 18]
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18] [19 20 21 22]

(2)shuffle=True 情况下数据划分情况 

import numpy as np
from sklearn.model_selection import KFold
x = np.arange(46).reshape(23,2)
kf = KFold(n_splits=5,shuffle=True)
for train_index, test_index in kf.split(x):
  print(train_index,test_index)
[ 0 3 4 5 6 7 8 9 10 11 12 14 15 16 17 19 20 21] [ 1 2 13 18 22]
[ 0 1 2 3 5 6 7 10 11 13 15 16 17 18 19 20 21 22] [ 4 8 9 12 14]
[ 0 1 2 3 4 7 8 9 10 12 13 14 15 16 17 18 19 22] [ 5 6 11 20 21]
[ 1 2 3 4 5 6 8 9 10 11 12 13 14 15 18 19 20 21 22] [ 0 7 16 17]
[ 0 1 2 4 5 6 7 8 9 11 12 13 14 16 17 18 20 21 22] [ 3 10 15 19]

总结:从数据中可以看出shuffle=True情况下数据的划分是打乱的,而shuffle=False情况下数据的划分是有序的

看完上述内容,是不是对如何用pandas划分数据集实现训练集和测试集有进一步的了解,如果还想学习更多内容,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI