今天就跟大家聊聊有关什么是大数据时代,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
1、理解大数据时代
(1)大数据时代的提出
最早提出大数据时代到来的是全球知名咨询公司麦肯锡,他认为数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。
(2)大数据时代的来临
随着互联网快速发展、智能手机以及“可佩带”计算设备的出现,我们的行为、位置,甚至身体生理数据等每一点变化都成为了可被记录和分析的数据。这些新技术推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB来衡量。
(3)大数据时代的特点
如果简单来理解什么是大数据,我们只要抓住大数据的四个特点,大量、高速、多样、价值。具体来讲就是数据体量巨大,数据的爆发性增长迫切的需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据;数据类型繁多,广泛的数据来源决定了大数据形式的多样性。任何形式的数据都可以产生作用,目前应用最广泛的就是推荐系统的应用;价值密度低,现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据;数据分析处理速度快,主要通过互联网传输。大数据对处理速度有非常严格的要求,服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。
2、海量的数据处理
公开数据显示,互联网搜索巨头百度2013年拥有数据量接近EB级别。阿里、腾讯都声明自己存储的数据总量都达到了百PB以上。此外,电信、医疗、金融、公共安全、交通、气象等各个方面保存的数据量也都达到数十或者上百PB级别。全球数据量以每两年翻倍的速度增长,在2010年已经正式进入ZB时代,到2020年全球数据总量将达到44ZB。
3、面对的挑战
在大数时代,数据分析的前提是有数据,数据存储的目的是支撑数据分析。究竟怎么去存储庞大的数据量,是开展数据分析的企业在当下面临的一个问题。传统的数据存储模式存储容量是有大小限制或者空间局限限制的,怎么去设计出一个可以支撑大量数据的存储方案是开展数据分析的首要前提。当解决了海量数据的存储问题,接下来面临的海量数据的计算问题也是比较让人头疼,因为企业不仅追求可以计算,还会追求计算的速度、效率。以目前互联网行业产生的数据量级别,要处理这些数据,就需要一个更好、更便捷的分析计算方式了。传统的显然力不从心了,而且效率也会非常低下。这正是传统数据分析领域面临的另一个挑战,如何让去分析、计算。
看完上述内容,你们对什么是大数据时代有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。