本篇内容介绍了“PostgreSQL中RecordAndGetPageWithFreeSpace有什么作用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
FSMAddress
内部的FSM处理过程以逻辑地址scheme的方式工作,树的每一个层次都可以认为是一个独立的地址文件.
/* * The internal FSM routines work on a logical addressing scheme. Each * level of the tree can be thought of as a separately addressable file. * 内部的FSM处理过程工作在一个逻辑地址scheme上. * 树的每一个层次都可以认为是一个独立的地址文件. */ typedef struct { //层次 int level; /* level */ //该层次内的页编号 int logpageno; /* page number within the level */ } FSMAddress; /* Address of the root page. */ //根页地址 static const FSMAddress FSM_ROOT_ADDRESS = {FSM_ROOT_LEVEL, 0};
FSMPage
FSM page数据结构.详细可参看src/backend/storage/freespace/README.
/* * Structure of a FSM page. See src/backend/storage/freespace/README for * details. * FSM page数据结构.详细可参看src/backend/storage/freespace/README. */ typedef struct { /* * fsm_search_avail() tries to spread the load of multiple backends by * returning different pages to different backends in a round-robin * fashion. fp_next_slot points to the next slot to be returned (assuming * there's enough space on it for the request). It's defined as an int, * because it's updated without an exclusive lock. uint16 would be more * appropriate, but int is more likely to be atomically * fetchable/storable. * fsm_search_avail()函数尝试通过在一轮循环中返回不同的页面到不同的后台进程, * 从而分散在后台进程上分散负载. * 该字段因为无需独占锁,因此定义为整型. * unit16可能会更合适,但整型看起来更适合于原子提取和存储. */ int fp_next_slot; /* * fp_nodes contains the binary tree, stored in array. The first * NonLeafNodesPerPage elements are upper nodes, and the following * LeafNodesPerPage elements are leaf nodes. Unused nodes are zero. * fp_nodes以数组的形式存储二叉树. * 第一个NonLeafNodesPerPage元素是上一层的节点,接下来的LeafNodesPerPage元素是叶子节点. * 未使用的节点为0. */ uint8 fp_nodes[FLEXIBLE_ARRAY_MEMBER]; } FSMPageData; typedef FSMPageData *FSMPage;
FSMLocalMap
对于小表,不需要创建FSM来存储空间信息,使用本地的内存映射信息.
/* Either already tried, or beyond the end of the relation */ //已尝试或者已在表的末尾之后 #define FSM_LOCAL_NOT_AVAIL 0x00 /* Available to try */ //可用于尝试 #define FSM_LOCAL_AVAIL 0x01 /* * For small relations, we don't create FSM to save space, instead we use * local in-memory map of pages to try. To locate free space, we simply try * pages directly without knowing ahead of time how much free space they have. * 对于小表,不需要创建FSM来存储空间信息,使用本地的内存映射信息. * 为了定位空闲空间,我们不需要知道他们有多少空闲空间而是直接简单的对page进行尝试. * * Note that this map is used to the find the block with required free space * for any given relation. We clear this map when we have found a block with * enough free space, when we extend the relation, or on transaction abort. * See src/backend/storage/freespace/README for further details. * 注意这个map用于搜索给定表的请求空闲空间. * 在找到有足够空闲空间的block/扩展了relation/在事务回滚时,则清除这个map的信息. * 详细可查看src/backend/storage/freespace/README. */ typedef struct { BlockNumber nblocks;//块数 uint8 map[HEAP_FSM_CREATION_THRESHOLD];//数组 } FSMLocalMap; static FSMLocalMap fsm_local_map = { 0, { FSM_LOCAL_NOT_AVAIL } }; #define FSM_LOCAL_MAP_EXISTS (fsm_local_map.nblocks > 0)
RecordAndGetPageWithFreeSpace返回满足条件的block,其主要逻辑如下:
1.初始化相关变量
2.如存在本地map,则首先使用该文件,调用fsm_local_search
3.如果没有本地map也没有FSM,创建本地map,然后调用fsm_local_search
4.使用FSM搜索
4.1获取FSM中原page可用空间对应的catalog
4.2根据所需空间大小,获取FSM中相应的catalog
4.3根据原页面,获取heap block所在的位置(FSMAddress)
4.4检索获取目标slot
4.5如目标slot合法,则获取相应的block,否则使用fsm_search搜索合适的block
/* * RecordAndGetPageWithFreeSpace - update info about a page and try again. * RecordAndGetPageWithFreeSpace - 更新page info并再次尝试. * * We provide this combo form to save some locking overhead, compared to * separate RecordPageWithFreeSpace + GetPageWithFreeSpace calls. There's * also some effort to return a page close to the old page; if there's a * page with enough free space on the same FSM page where the old one page * is located, it is preferred. * 相对于单独的RecordPageWithFreeSpace + GetPageWithFreeSpace调用, * 我们提供这个组合形式用于节省一些锁的负载. * 这里同样存储一些努力用于返回接近旧page的page. * 如果与旧的page在同一个FSM page上有足够空闲空间的page存在,那这个page会被选中. * * For very small heap relations that don't have a FSM, we update the local * map to indicate we have tried a page, and return the next page to try. * 对于非常小的堆表,是不需要FSM的,直接更新本地map来提示进程需要尝试获得一个page,并返回下一个page. */ BlockNumber RecordAndGetPageWithFreeSpace(Relation rel, BlockNumber oldPage, Size oldSpaceAvail, Size spaceNeeded) { int old_cat; int search_cat; FSMAddress addr;//FSM地址 uint16 slot;//槽号 int search_slot; BlockNumber nblocks = InvalidBlockNumber; /* First try the local map, if it exists. */ //如存在本地map,则首先使用该文件. //#define FSM_LOCAL_MAP_EXISTS (fsm_local_map.nblocks > 0) if (FSM_LOCAL_MAP_EXISTS) { Assert((rel->rd_rel->relkind == RELKIND_RELATION || rel->rd_rel->relkind == RELKIND_TOASTVALUE) && fsm_local_map.map[oldPage] == FSM_LOCAL_AVAIL); //设置oldPage为不可用 fsm_local_map.map[oldPage] = FSM_LOCAL_NOT_AVAIL; //搜索并返回结果 return fsm_local_search(); } if (!fsm_allow_writes(rel, oldPage, InvalidBlockNumber, &nblocks)) { //---- 如果FSM不允许写 /* * If we have neither a local map nor a FSM, we probably just tried * the target block in the smgr relation entry and failed, so we'll * need to create the local map. * 如果没有本地map也没有FSM, * 那么我们只是尝试了smgr relation中的目标block而且失败了,那么需要创建本地map. */ //设置本地map fsm_local_set(rel, nblocks); //搜索本地map return fsm_local_search(); } /* Normal FSM logic follows */ //------ 使用FSM的逻辑 //oldSpaceAvail/32,最大255/254 old_cat = fsm_space_avail_to_cat(oldSpaceAvail); //(needed + FSM_CAT_STEP - 1) / FSM_CAT_STEP //#define FSM_CAT_STEP (BLCKSZ / FSM_CATEGORIES) //#define FSM_CATEGORIES 256 search_cat = fsm_space_needed_to_cat(spaceNeeded); /* Get the location of the FSM byte representing the heap block */ //获得对应heap block的位置 addr = fsm_get_location(oldPage, &slot); //在给定的FSM page和slot中设置值,并返回slot search_slot = fsm_set_and_search(rel, addr, slot, old_cat, search_cat); /* * If fsm_set_and_search found a suitable new block, return that. * Otherwise, search as usual. * 如fsm_set_and_search成功找到合适的block,则返回;否则,执行常规的检索. */ if (search_slot != -1) return fsm_get_heap_blk(addr, search_slot); else return fsm_search(rel, search_cat); } /* * Search the local map for an available block to try, in descending order. * As such, there is no heuristic available to decide which order will be * better to try, but the probability of having space in the last block in the * map is higher because that is the most recent block added to the heap. * 以倒序的方式检索本地map找可用的block. * 在这种情况下,没有特别好的办法用于确定那种排序方法更好, * 但在map中最后一个block中存在空闲空间的可能性更高,因为这是最近添加到堆中的block. * * This function is used when there is no FSM. * 如无FSM则使用该函数. */ static BlockNumber fsm_local_search(void) { BlockNumber target_block; /* Local map must be set by now. */ //现在本地map必须已设置 Assert(FSM_LOCAL_MAP_EXISTS); //目标block target_block = fsm_local_map.nblocks; do { //循环 target_block--;//从最后一个block开始 if (fsm_local_map.map[target_block] == FSM_LOCAL_AVAIL) return target_block;//最后一个block可用,则返回 } while (target_block > 0); //target_block == 0 /* * If we didn't find any available block to try in the local map, then * clear it. This prevents us from using the map again without setting it * first, which would otherwise lead to the same conclusion again and * again. * 在本地map中没有发现可用的block,则清除相关信息. * 这可以防止我们在没有正确设置map的情况下使用该map, * 这会导致重复的相同结论(没有可用的block). */ FSMClearLocalMap(); //返回InvalidBlockNumber return InvalidBlockNumber; } /* * Initialize or update the local map of blocks to try, for when there is * no FSM. * 如无FSM,则初始化并更新本地map * * When we initialize the map, the whole heap is potentially available to * try. Testing revealed that trying every block can cause a small * performance dip compared to when we use a FSM, so we try every other * block instead. * 在我们初始化map的时候,整个堆可能已可用. * 测试表名,与使用FSM相比,尝试每个块会导致小幅的性能下降,因此尝试每一个块. */ static void fsm_local_set(Relation rel, BlockNumber cur_nblocks) { BlockNumber blkno, cached_target_block; /* The local map must not be set already. */ //验证 Assert(!FSM_LOCAL_MAP_EXISTS); /* * Starting at the current last block in the relation and working * backwards, mark alternating blocks as available. * 在关系的当前最后一个块开始往后减少,标记可更新的块可用. */ blkno = cur_nblocks - 1;//最后一个块 while (true) { //更新为可用 fsm_local_map.map[blkno] = FSM_LOCAL_AVAIL; if (blkno >= 2) blkno -= 2; else break; } /* Cache the number of blocks. */ //缓存块数 fsm_local_map.nblocks = cur_nblocks; /* Set the status of the cached target block to 'unavailable'. */ //设置缓存的目标块状态为未可用 cached_target_block = RelationGetTargetBlock(rel); if (cached_target_block != InvalidBlockNumber && cached_target_block < cur_nblocks) fsm_local_map.map[cached_target_block] = FSM_LOCAL_NOT_AVAIL; } /* * Return category corresponding x bytes of free space * 返回相应有x字节空间空间的目录 */ static uint8 fsm_space_avail_to_cat(Size avail) { int cat; //确保请求的小于块大小 Assert(avail < BLCKSZ); //如大于最大请求大小,返回255 //#define MaxFSMRequestSize MaxHeapTupleSize //#define MaxHeapTupleSize (BLCKSZ - MAXALIGN(SizeOfPageHeaderData + sizeof(ItemIdData))) if (avail >= MaxFSMRequestSize) return 255; //#define FSM_CAT_STEP (BLCKSZ / FSM_CATEGORIES) //#define FSM_CATEGORIES 256 //块大小为8K则FSM_CAT_STEP = 32 cat = avail / FSM_CAT_STEP; /* * The highest category, 255, is reserved for MaxFSMRequestSize bytes or * more. * 最高层的目录,255,保留用于MaxFSMRequestSize或者更大的大小. */ if (cat > 254) cat = 254;//返回254 return (uint8) cat; } /* * Which category does a page need to have, to accommodate x bytes of data? * While fsm_size_to_avail_cat() rounds down, this needs to round up. * 哪一个目录有需要的page,可满足x bytes大小的数据. * 因为fsm_size_to_avail_cat()往下取整,因此这里需要往上取整. */ static uint8 fsm_space_needed_to_cat(Size needed) { int cat; /* Can't ask for more space than the highest category represents */ //不能要求最大目录可能表示的空间大小 if (needed > MaxFSMRequestSize) elog(ERROR, "invalid FSM request size %zu", needed); if (needed == 0) return 1; cat = (needed + FSM_CAT_STEP - 1) / FSM_CAT_STEP; if (cat > 255) cat = 255; return (uint8) cat; } /* * Return the FSM location corresponding to given heap block. * 返回给定堆block的FSM位置. */ //addr = fsm_get_location(oldPage, &slot); static FSMAddress fsm_get_location(BlockNumber heapblk, uint16 *slot) { FSMAddress addr; addr.level = FSM_BOTTOM_LEVEL; //#define SlotsPerFSMPage LeafNodesPerPage //#define LeafNodesPerPage (NodesPerPage - NonLeafNodesPerPage) //#define NodesPerPage (BLCKSZ - MAXALIGN(SizeOfPageHeaderData) - \ offsetof(FSMPageData, fp_nodes)) //#define NonLeafNodesPerPage (BLCKSZ / 2 - 1) addr.logpageno = heapblk / SlotsPerFSMPage; *slot = heapblk % SlotsPerFSMPage; return addr; }
测试脚本
15:54:13 (xdb@[local]:5432)testdb=# insert into t1 values (1,'1','1');
启动gdb,设置断点
(gdb) b RecordAndGetPageWithFreeSpace Breakpoint 1 at 0x8879e4: file freespace.c, line 152. (gdb) c Continuing. Breakpoint 1, RecordAndGetPageWithFreeSpace (rel=0x7fad0df13788, oldPage=1, oldSpaceAvail=16, spaceNeeded=32) at freespace.c:152 152 int old_cat = fsm_space_avail_to_cat(oldSpaceAvail); (gdb)
输入参数
(gdb) p *rel $5 = {rd_node = {spcNode = 1663, dbNode = 16402, relNode = 50820}, rd_smgr = 0x2084b00, rd_refcnt = 1, rd_backend = -1, rd_islocaltemp = false, rd_isnailed = false, rd_isvalid = true, rd_indexvalid = 1 '\001', rd_statvalid = false, rd_createSubid = 0, rd_newRelfilenodeSubid = 0, rd_rel = 0x7fad0df139a0, rd_att = 0x7fad0df13ab8, rd_id = 50820, rd_lockInfo = {lockRelId = {relId = 50820, dbId = 16402}}, rd_rules = 0x0, rd_rulescxt = 0x0, trigdesc = 0x0, rd_rsdesc = 0x0, rd_fkeylist = 0x0, rd_fkeyvalid = false, rd_partkeycxt = 0x0, rd_partkey = 0x0, rd_pdcxt = 0x0, rd_partdesc = 0x0, rd_partcheck = 0x0, rd_indexlist = 0x7fad0df12820, rd_oidindex = 0, rd_pkindex = 0, rd_replidindex = 0, rd_statlist = 0x0, rd_indexattr = 0x0, rd_projindexattr = 0x0, rd_keyattr = 0x0, rd_pkattr = 0x0, rd_idattr = 0x0, rd_projidx = 0x0, rd_pubactions = 0x0, rd_options = 0x0, rd_index = 0x0, rd_indextuple = 0x0, rd_amhandler = 0, rd_indexcxt = 0x0, rd_amroutine = 0x0, rd_opfamily = 0x0, rd_opcintype = 0x0, rd_support = 0x0, rd_supportinfo = 0x0, rd_indoption = 0x0, rd_indexprs = 0x0, rd_indpred = 0x0, rd_exclops = 0x0, rd_exclprocs = 0x0, rd_exclstrats = 0x0, rd_amcache = 0x0, rd_indcollation = 0x0, rd_fdwroutine = 0x0, rd_toastoid = 0, pgstat_info = 0x20785f0} (gdb)
1.初始化相关变量
2.如存在本地map,则首先使用该文件,调用fsm_local_search
3.如果没有本地map也没有FSM,创建本地map,然后调用fsm_local_search
4.使用FSM搜索
4.1获取FSM中原page可用空间对应的catalog —> 0
4.2根据所需空间大小,获取FSM中相应的catalog —> 1
(gdb) n 153 int search_cat = fsm_space_needed_to_cat(spaceNeeded); (gdb) 159 addr = fsm_get_location(oldPage, &slot); (gdb) p old_cat $1 = 0 (gdb) p search_cat $2 = 1 (gdb)
4.3根据原页面,获取heap block所在的位置(FSMAddress)
(gdb) n 161 search_slot = fsm_set_and_search(rel, addr, slot, old_cat, search_cat); (gdb) p addr $3 = {level = 0, logpageno = 0} (gdb)
4.4检索获取目标slot
(gdb) n 167 if (search_slot != -1) (gdb) p search_slot $4 = 4 (gdb)
4.5如目标slot合法,则获取相应的block,否则使用fsm_search搜索合适的block
(gdb) n 168 return fsm_get_heap_blk(addr, search_slot); (gdb) 171 } (gdb) RelationGetBufferForTuple (relation=0x7fad0df13788, len=32, otherBuffer=0, options=0, bistate=0x0, vmbuffer=0x7ffe1b797dcc, vmbuffer_other=0x0) at hio.c:397 397 while (targetBlock != InvalidBlockNumber) (gdb) p targetBlock $6 = 4 (gdb)
“PostgreSQL中RecordAndGetPageWithFreeSpace有什么作用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。