这篇文章主要介绍“PostgreSQL中grouping_planner函数有什么作用”,在日常操作中,相信很多人在PostgreSQL中grouping_planner函数有什么作用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”PostgreSQL中grouping_planner函数有什么作用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
分组/聚集等操作是在一个Relation上叠加分组/聚集运算,grouping_planner函数首先通过query_planner函数生成一个新的关系,然后在此关系上attached分组/聚集等操作。
/*-------------------- * grouping_planner * Perform planning steps related to grouping, aggregation, etc. * 执行与与分组/聚集相关的"规划步骤". * 分组/聚集等操作是在一个Relation上叠加分组/聚集运算, * PG首先通过query_planner函数生成一个新的关系,然后在此关系上attached分组/聚集等操作 * * This function adds all required top-level processing to the scan/join * Path(s) produced by query_planner. * * 该函数还处理了所有需要在顶层处理的扫描/连接路径(通过query_planner函数生成) * * If inheritance_update is true, we're being called from inheritance_planner * and should not include a ModifyTable step in the resulting Path(s). * (inheritance_planner will create a single ModifyTable node covering all the * target tables.) * * 如果标志inheritance_update为true,这个函数的调用者是inheritance_planner,在结果路径中 * 不应包含ModifyTable步骤(inheritance_planner会创建一个单独的覆盖所有目标表的ModifyTable节点). * * tuple_fraction is the fraction of tuples we expect will be retrieved. * tuple_fraction is interpreted as follows: * 0: expect all tuples to be retrieved (normal case) * 0 < tuple_fraction < 1: expect the given fraction of tuples available * from the plan to be retrieved * tuple_fraction >= 1: tuple_fraction is the absolute number of tuples * expected to be retrieved (ie, a LIMIT specification) * * tuple_fraction是我们希望搜索的元组比例: * 0:正常情况下,期望扫描所有的元组 * 大于0小于1:按给定的比例扫描 * 大于等于1:扫描的元组数量(比如通过LIMIT语句指定) * * Returns nothing; the useful output is in the Paths we attach to the * (UPPERREL_FINAL, NULL) upperrel in *root. In addition, * root->processed_tlist contains the final processed targetlist. * * 该函数没有返回值,有用的输出是root->upperrel->Paths,另外,root->processed_tlist中存储最终的投影列 * * Note that we have not done set_cheapest() on the final rel; it's convenient * to leave this to the caller. *-------------------- */ static void grouping_planner(PlannerInfo *root, bool inheritance_update, double tuple_fraction) { Query *parse = root->parse; List *tlist; int64 offset_est = 0; int64 count_est = 0; double limit_tuples = -1.0; bool have_postponed_srfs = false; PathTarget *final_target; List *final_targets; List *final_targets_contain_srfs; bool final_target_parallel_safe; RelOptInfo *current_rel; RelOptInfo *final_rel; ListCell *lc; /* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */ //如果存在LIMIT/OFFSET子句,调整tuple_fraction if (parse->limitCount || parse->limitOffset)//存在LIMIT/OFFSET语句 { tuple_fraction = preprocess_limit(root, tuple_fraction, &offset_est, &count_est);//获取元组数量 /* * If we have a known LIMIT, and don't have an unknown OFFSET, we can * estimate the effects of using a bounded sort. * 如果我们有一个已知LIMIT,并且没有未知的OFFSET,我们可以估算使用有界排序的效果。 */ if (count_est > 0 && offset_est >= 0) limit_tuples = (double) count_est + (double) offset_est;// } /* Make tuple_fraction accessible to lower-level routines */ //使tuple_fraction可被低级别的处理过程访问(在优化器信息中设置) root->tuple_fraction = tuple_fraction;//设置值 if (parse->setOperations)//集合操作,如UNION等 { /* * If there's a top-level ORDER BY, assume we have to fetch all the * tuples. This might be too simplistic given all the hackery below * to possibly avoid the sort; but the odds of accurate estimates here * are pretty low anyway. XXX try to get rid of this in favor of * letting plan_set_operations generate both fast-start and * cheapest-total paths. * 如果语句的最外层(顶级)存在ORDER BY子句,假设我们必须获取所有元组。 * 这可能过于简单,但无论如何,准确估计的几率是相当低的。 * XXX试图摆脱这种情况,让plan_set_operations同时生成快速启动和最便宜的路径。 */ if (parse->sortClause) root->tuple_fraction = 0.0;//存在排序操作,需扫描所有的元组 /* * Construct Paths for set operations. The results will not need any * work except perhaps a top-level sort and/or LIMIT. Note that any * special work for recursive unions is the responsibility of * plan_set_operations. * 为集合操作构造路径。 * 除了最外层的SORT/LIMIT操作外不需要作其他操作。 注意,递归联合的任何特殊工作都是plan_set_operations负责。 */ current_rel = plan_set_operations(root);//调用集合操作的"规划"函数 /* * We should not need to call preprocess_targetlist, since we must be * in a SELECT query node. Instead, use the targetlist returned by * plan_set_operations (since this tells whether it returned any * resjunk columns!), and transfer any sort key information from the * original tlist. * 我们不需要调用preprocess_targetlist函数,因为执行这些操作必须在SELECT查询NODE中。 * 相反,使用plan_set_operations函数返回的targetlist(因为这告诉它是否返回了所有的resjunk列), * 并从原始投影列链表tlist中传输所有的排序sort键信息。 */ Assert(parse->commandType == CMD_SELECT); tlist = root->processed_tlist; /* 从plan_set_operations函数的返回结果中获取;from plan_set_operations */ /* for safety, copy processed_tlist instead of modifying in-place */ //为了安全起见,复制processed_tlist,而不是就地修改 tlist = postprocess_setop_tlist(copyObject(tlist), parse->targetList); /* Save aside the final decorated tlist */ // root->processed_tlist = tlist; /* Also extract the PathTarget form of the setop result tlist */ //从集合操作结果投影列中获取PathTarget格式的结果列 final_target = current_rel->cheapest_total_path->pathtarget; /* And check whether it's parallel safe */ //检查是否并行安全 final_target_parallel_safe = is_parallel_safe(root, (Node *) final_target->exprs); /* The setop result tlist couldn't contain any SRFs */ //集合操作结果投影列不能包含任何的SRFs Assert(!parse->hasTargetSRFs); final_targets = final_targets_contain_srfs = NIL; /* * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have * checked already, but let's make sure). * 无法在这里处理[KEY]更新/共享(解析器应该已经检查过了,但需要确认)。 */ if (parse->rowMarks) ereport(ERROR, (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), /*------ translator: %s is a SQL row locking clause such as FOR UPDATE */ errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT", LCS_asString(linitial_node(RowMarkClause, parse->rowMarks)->strength)))); /* * Calculate pathkeys that represent result ordering requirements * 计算表示结果排序需求的pathkeys */ Assert(parse->distinctClause == NIL); root->sort_pathkeys = make_pathkeys_for_sortclauses(root, parse->sortClause, tlist); } else//非集合操作 { /* No set operations, do regular planning */ //没有集合操作,执行常规的规划过程 PathTarget *sort_input_target; List *sort_input_targets; List *sort_input_targets_contain_srfs; bool sort_input_target_parallel_safe; PathTarget *grouping_target; List *grouping_targets; List *grouping_targets_contain_srfs; bool grouping_target_parallel_safe; PathTarget *scanjoin_target; List *scanjoin_targets; List *scanjoin_targets_contain_srfs; bool scanjoin_target_parallel_safe; bool scanjoin_target_same_exprs; bool have_grouping; AggClauseCosts agg_costs; WindowFuncLists *wflists = NULL; List *activeWindows = NIL; grouping_sets_data *gset_data = NULL; standard_qp_extra qp_extra; /* A recursive query should always have setOperations */ //递归查询应包含集合操作,检查! Assert(!root->hasRecursion);//检查 /* Preprocess grouping sets and GROUP BY clause, if any */ //预处理grouping sets语句和GROUP BY 子句 if (parse->groupingSets)// { gset_data = preprocess_grouping_sets(root);//预处理grouping sets语句 } else { /* Preprocess regular GROUP BY clause, if any */ //如处理常规的GROUP BY 子句 if (parse->groupClause) parse->groupClause = preprocess_groupclause(root, NIL);//处理普通的Group By语句 } /* Preprocess targetlist */ //预处理投影列 tlist = preprocess_targetlist(root);//处理投影列 /* * We are now done hacking up the query's targetlist. Most of the * remaining planning work will be done with the PathTarget * representation of tlists, but save aside the full representation so * that we can transfer its decoration (resnames etc) to the topmost * tlist of the finished Plan. * 现在已经完成了对查询语句targetlist的hacking工作。 * 剩下的大部分规划工作将使用tlists的PathTarget来完成, * 但是需要保留完整的信息,这样我们就可以将它的修饰信息(如resname等)转移到完成计划的最顶层tlist中。 */ root->processed_tlist = tlist;//赋值 /* * Collect statistics about aggregates for estimating costs, and mark * all the aggregates with resolved aggtranstypes. We must do this * before slicing and dicing the tlist into various pathtargets, else * some copies of the Aggref nodes might escape being marked with the * correct transtypes. * 收集关于聚集操作的统计数据以估计成本,并在所有聚集操作上标上已解决的aggtranstypes。 * 必须在将tlist切割成各种PathKeys之前完成这项工作, * 否则一些Aggref节点的副本中正确transtypes可能会被替换。 * * Note: currently, we do not detect duplicate aggregates here. This * may result in somewhat-overestimated cost, which is fine for our * purposes since all Paths will get charged the same. But at some * point we might wish to do that detection in the planner, rather * than during executor startup. * 注意:目前,我们没有检测到重复的聚合。 * 这可能会导致一些过高估算的成本,这对于我们的目的来说是好的,因为所有的Path都会耗费相同的成本。 * 但在某些时候,可能希望在计划器中进行检测,而不是在执行器executor启动期间。 */ MemSet(&agg_costs, 0, sizeof(AggClauseCosts)); if (parse->hasAggs)//存在聚合函数 { get_agg_clause_costs(root, (Node *) tlist, AGGSPLIT_SIMPLE, &agg_costs);//收集用于估算成本的统计信息 get_agg_clause_costs(root, parse->havingQual, AGGSPLIT_SIMPLE, &agg_costs);//收集用于估算成本的统计信息 } /* * Locate any window functions in the tlist. (We don't need to look * anywhere else, since expressions used in ORDER BY will be in there * too.) Note that they could all have been eliminated by constant * folding, in which case we don't need to do any more work. * 在tlist中找到所有的窗口函数。 * (我们不需要在其他地方查找,因为ORDER BY中使用的表达式也在那里。) * 注意,它们可以通过不断折叠来消除,在这种情况下,我们不需要做更多的工作。 */ if (parse->hasWindowFuncs)//窗口函数 { wflists = find_window_functions((Node *) tlist, list_length(parse->windowClause)); if (wflists->numWindowFuncs > 0) activeWindows = select_active_windows(root, wflists); else parse->hasWindowFuncs = false; } /* * Preprocess MIN/MAX aggregates, if any. Note: be careful about * adding logic between here and the query_planner() call. Anything * that is needed in MIN/MAX-optimizable cases will have to be * duplicated in planagg.c. * 重新处理MAX/MIN聚集操作,如果有的话。 * 注意:在这里和query_planner()调用之间添加逻辑时要小心。 * 在MIN/MAX优化情况下需要的所有东西都必须在plan .c中重复。 */ if (parse->hasAggs)//预处理最大最小聚合 preprocess_minmax_aggregates(root, tlist); /* * Figure out whether there's a hard limit on the number of rows that * query_planner's result subplan needs to return. Even if we know a * hard limit overall, it doesn't apply if the query has any * grouping/aggregation operations, or SRFs in the tlist. * 计算query_planner结果子计划需要返回的行数是否有硬性限制。 * 即使我们知道总的强制限制,如果查询在tlist中有任何分组/聚合操作或SRFs,它也不适用。 */ if (parse->groupClause || parse->groupingSets || parse->distinctClause || parse->hasAggs || parse->hasWindowFuncs || parse->hasTargetSRFs || root->hasHavingQual)//存在Group By/Grouping Set等语句,则limit_tuples设置为-1 root->limit_tuples = -1.0; else root->limit_tuples = limit_tuples;//否则,正常赋值 /* Set up data needed by standard_qp_callback */ //配置standard_qp_callback函数需要的相关数据 qp_extra.tlist = tlist;//赋值 qp_extra.activeWindows = activeWindows; qp_extra.groupClause = (gset_data ? (gset_data->rollups ? linitial_node(RollupData, gset_data->rollups)->groupClause : NIL) : parse->groupClause); /* * Generate the best unsorted and presorted paths for the scan/join * portion of this Query, ie the processing represented by the * FROM/WHERE clauses. (Note there may not be any presorted paths.) * We also generate (in standard_qp_callback) pathkey representations * of the query's sort clause, distinct clause, etc. * 为这个查询的扫描/连接部分(即FROM/WHERE子句表示的处理)生成最好的未排序和预排序路径。 * (注意,可能没有任何预先设置的路径。) * 我们还生成(在standard_qp_callback中)查询语句的sort子句和distinct子句对应的PathKey。 */ //为查询中的扫描/连接部分生成最优的未排序/预排序路径(如FROM/WHERE语句表示的处理过程) current_rel = query_planner(root, tlist, standard_qp_callback, &qp_extra); /* * Convert the query's result tlist into PathTarget format. * 转换查询结果为PathTarget格式 * * Note: it's desirable to not do this till after query_planner(), * because the target width estimates can use per-Var width numbers * that were obtained within query_planner(). * 注意:在query_planner()之后才需要这样做,因为目标列的宽度估算可以使用在query_planner()中获得的每个VAR信息。 */ final_target = create_pathtarget(root, tlist); final_target_parallel_safe = is_parallel_safe(root, (Node *) final_target->exprs); /* * If ORDER BY was given, consider whether we should use a post-sort * projection, and compute the adjusted target for preceding steps if * so. * 如果存在ORDER BY子句,考虑是否使用post-sort投影,如使用则计算前面已调整过的步骤目标列。 */ if (parse->sortClause)//存在sort语句? { sort_input_target = make_sort_input_target(root, final_target, &have_postponed_srfs); sort_input_target_parallel_safe = is_parallel_safe(root, (Node *) sort_input_target->exprs); } else { sort_input_target = final_target;//不存在,则直接赋值 sort_input_target_parallel_safe = final_target_parallel_safe; } /* * If we have window functions to deal with, the output from any * grouping step needs to be what the window functions want; * otherwise, it should be sort_input_target. * 如果要处理窗口函数,任何分组步骤的输出都需要满足窗口函数的要求; * 否则,它应该是sort_input_target。 */ if (activeWindows)//存在窗口函数? { grouping_target = make_window_input_target(root, final_target, activeWindows); grouping_target_parallel_safe = is_parallel_safe(root, (Node *) grouping_target->exprs); } else { grouping_target = sort_input_target; grouping_target_parallel_safe = sort_input_target_parallel_safe; } /* * If we have grouping or aggregation to do, the topmost scan/join * plan node must emit what the grouping step wants; otherwise, it * should emit grouping_target. * 如果要进行分组或聚合,最外层的扫描/连接计划节点必须发出分组步骤需要的内容; * 否则,它应该设置grouping_target。 */ have_grouping = (parse->groupClause || parse->groupingSets || parse->hasAggs || root->hasHavingQual); if (have_grouping) {//存在group等分组语句 scanjoin_target = make_group_input_target(root, final_target); scanjoin_target_parallel_safe = is_parallel_safe(root, (Node *) grouping_target->exprs); } else { scanjoin_target = grouping_target; scanjoin_target_parallel_safe = grouping_target_parallel_safe; } /* * If there are any SRFs in the targetlist, we must separate each of * these PathTargets into SRF-computing and SRF-free targets. Replace * each of the named targets with a SRF-free version, and remember the * list of additional projection steps we need to add afterwards. * 如果targetlist中有任何SRFs,我们必须将这些PathKeys分别划分为SRF-computing和SRF-free 目标列。 * 用一个没有SRF的版本替换每个指定的目标,并记住后面需要添加的其他投影步骤链表。 */ if (parse->hasTargetSRFs)//存在SRFs { /* final_target doesn't recompute any SRFs in sort_input_target */ //在sort_input_target中不需要重复计算SRFs split_pathtarget_at_srfs(root, final_target, sort_input_target, &final_targets, &final_targets_contain_srfs); final_target = linitial_node(PathTarget, final_targets); Assert(!linitial_int(final_targets_contain_srfs)); /* likewise for sort_input_target vs. grouping_target */ split_pathtarget_at_srfs(root, sort_input_target, grouping_target, &sort_input_targets, &sort_input_targets_contain_srfs); sort_input_target = linitial_node(PathTarget, sort_input_targets); Assert(!linitial_int(sort_input_targets_contain_srfs)); /* likewise for grouping_target vs. scanjoin_target */ split_pathtarget_at_srfs(root, grouping_target, scanjoin_target, &grouping_targets, &grouping_targets_contain_srfs); grouping_target = linitial_node(PathTarget, grouping_targets); Assert(!linitial_int(grouping_targets_contain_srfs)); /* scanjoin_target will not have any SRFs precomputed for it */ split_pathtarget_at_srfs(root, scanjoin_target, NULL, &scanjoin_targets, &scanjoin_targets_contain_srfs); scanjoin_target = linitial_node(PathTarget, scanjoin_targets); Assert(!linitial_int(scanjoin_targets_contain_srfs)); } else { /* initialize lists; for most of these, dummy values are OK */ //初始化链表 final_targets = final_targets_contain_srfs = NIL; sort_input_targets = sort_input_targets_contain_srfs = NIL; grouping_targets = grouping_targets_contain_srfs = NIL; scanjoin_targets = list_make1(scanjoin_target); scanjoin_targets_contain_srfs = NIL; } /* Apply scan/join target. */ //应用扫描/连接target scanjoin_target_same_exprs = list_length(scanjoin_targets) == 1 && equal(scanjoin_target->exprs, current_rel->reltarget->exprs); apply_scanjoin_target_to_paths(root, current_rel, scanjoin_targets, scanjoin_targets_contain_srfs, scanjoin_target_parallel_safe, scanjoin_target_same_exprs); /* * Save the various upper-rel PathTargets we just computed into * root->upper_targets[]. The core code doesn't use this, but it * provides a convenient place for extensions to get at the info. For * consistency, we save all the intermediate targets, even though some * of the corresponding upperrels might not be needed for this query. * 保存刚刚计算的各种upper- >upper_targets[]信息。 * 核心代码不使用这个功能,但是它为扩展提供了一个方便的地方来获取信息。 * 为了保持一致性,我们保存了所有的中间目标列,即使这个查询可能不需要一些相应的上层关系。 */ //赋值 root->upper_targets[UPPERREL_FINAL] = final_target; root->upper_targets[UPPERREL_WINDOW] = sort_input_target; root->upper_targets[UPPERREL_GROUP_AGG] = grouping_target; /* * If we have grouping and/or aggregation, consider ways to implement * that. We build a new upperrel representing the output of this * phase. * 如果我们有分组和/或聚合,考虑如何实现它。需要构建一个表示此阶段输出的上层关系。 */ if (have_grouping)//存在分组操作 { current_rel = create_grouping_paths(root, current_rel, grouping_target, grouping_target_parallel_safe, &agg_costs, gset_data);//创建分组访问路径 /* Fix things up if grouping_target contains SRFs */ if (parse->hasTargetSRFs) adjust_paths_for_srfs(root, current_rel, grouping_targets, grouping_targets_contain_srfs); } /* * If we have window functions, consider ways to implement those. We * build a new upperrel representing the output of this phase. * 如果有窗口函数,考虑如何实现这些函数。 * 我们建立一个新的上层关系表示这个阶段的输出。 */ if (activeWindows)//存在窗口函数 { current_rel = create_window_paths(root, current_rel, grouping_target, sort_input_target, sort_input_target_parallel_safe, tlist, wflists, activeWindows); /* Fix things up if sort_input_target contains SRFs */ if (parse->hasTargetSRFs) adjust_paths_for_srfs(root, current_rel, sort_input_targets, sort_input_targets_contain_srfs); } /* * If there is a DISTINCT clause, consider ways to implement that. We * build a new upperrel representing the output of this phase. * 如果有一个DISTINCT子句,考虑如何实现它。构建一个表示此阶段输出的上层关系。 */ if (parse->distinctClause)//存在distinct? { current_rel = create_distinct_paths(root, current_rel); } } /* end of if (setOperations) */ /* * If ORDER BY was given, consider ways to implement that, and generate a * new upperrel containing only paths that emit the correct ordering and * project the correct final_target. We can apply the original * limit_tuples limit in sort costing here, but only if there are no * postponed SRFs. * 如果指定了ORDER BY,考虑实现它的方法,并生成一个仅包含ORDER和final_target的Path的上层关系。 * 我们可以在排序成本中应用初始的limit_tuples限制,但前提是没有延迟的SRFs。 */ if (parse->sortClause)//存在sort语句? { current_rel = create_ordered_paths(root, current_rel, final_target, final_target_parallel_safe, have_postponed_srfs ? -1.0 : limit_tuples); /* Fix things up if final_target contains SRFs */ if (parse->hasTargetSRFs) adjust_paths_for_srfs(root, current_rel, final_targets, final_targets_contain_srfs); } /* * Now we are prepared to build the final-output upperrel. * 可以构建最终的关系了! */ final_rel = fetch_upper_rel(root, UPPERREL_FINAL, NULL);//获取最终的RelOptInfo(用于替换RTE) /* * If the input rel is marked consider_parallel and there's nothing that's * not parallel-safe in the LIMIT clause, then the final_rel can be marked * consider_parallel as well. Note that if the query has rowMarks or is * not a SELECT, consider_parallel will be false for every relation in the * query. * 如果关系被标记为consider_parallel,并且在LIMIT子句中没有任何非并行安全的地方, * 那么final_rel也可以被标记为consider_parallel。 * 请注意,如果查询有rowMarks或不是SELECT语句,则认为对查询中的每个关系consider_parallel都为false。 */ if (current_rel->consider_parallel && is_parallel_safe(root, parse->limitOffset) && is_parallel_safe(root, parse->limitCount)) final_rel->consider_parallel = true;//并行 /* * If the current_rel belongs to a single FDW, so does the final_rel. * 如current_rel属于某个单独的FDW,设置final_rel信息 */ final_rel->serverid = current_rel->serverid; final_rel->userid = current_rel->userid; final_rel->useridiscurrent = current_rel->useridiscurrent; final_rel->fdwroutine = current_rel->fdwroutine; /* * Generate paths for the final_rel. Insert all surviving paths, with * LockRows, Limit, and/or ModifyTable steps added if needed. * 为final_rel生成访问路径. * 插入所有筛选后的访问路径,包含需添加的LockRows/Limit/ModifyTable步骤 */ foreach(lc, current_rel->pathlist)//逐一遍历访问路径 { Path *path = (Path *) lfirst(lc); /* * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node. * (Note: we intentionally test parse->rowMarks not root->rowMarks * here. If there are only non-locking rowmarks, they should be * handled by the ModifyTable node instead. However, root->rowMarks * is what goes into the LockRows node.) * 如果存在FOR [KEY] UPDATE/SHARE子句,则添加LockRows节点。 * (注意:我们在这里有意测试的是parse->rowMarks,而不是root->rowMarks。 * 如果只有非锁定行标记,则应该由ModifyTable节点处理。 * 但是,root->rowMarks是进入LockRows节点的行标记。 */ if (parse->rowMarks) { path = (Path *) create_lockrows_path(root, final_rel, path, root->rowMarks, SS_assign_special_param(root)); } /* * If there is a LIMIT/OFFSET clause, add the LIMIT node. * 如果存在LIMIT/OFFSET子句,添加LIMIT节点 */ if (limit_needed(parse)) { path = (Path *) create_limit_path(root, final_rel, path, parse->limitOffset, parse->limitCount, offset_est, count_est); } /* * If this is an INSERT/UPDATE/DELETE, and we're not being called from * inheritance_planner, add the ModifyTable node. * 如为INSERT/UPDATE/DELETE,而且不是从inheritance_planner函数中调用,则添加ModifyTable节点 */ if (parse->commandType != CMD_SELECT && !inheritance_update)//非查询语句 { List *withCheckOptionLists; List *returningLists; List *rowMarks; /* * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if * needed. * 如需要,添加WITH CHECK OPTION and RETURNING信息 */ if (parse->withCheckOptions) withCheckOptionLists = list_make1(parse->withCheckOptions); else withCheckOptionLists = NIL; if (parse->returningList) returningLists = list_make1(parse->returningList); else returningLists = NIL; /* * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node * will have dealt with fetching non-locked marked rows, else we * need to have ModifyTable do that. * 如果存在FOR [KEY] UPDATE/SHARE子句,那么LockRows节点将处理获取非带锁标记的行, * 否则我们需要使用ModifyTable来完成。 */ if (parse->rowMarks) rowMarks = NIL; else rowMarks = root->rowMarks; path = (Path *) create_modifytable_path(root, final_rel, parse->commandType, parse->canSetTag, parse->resultRelation, NIL, false, list_make1_int(parse->resultRelation), list_make1(path), list_make1(root), withCheckOptionLists, returningLists, rowMarks, parse->onConflict, SS_assign_special_param(root)); } /* And shove it into final_rel */ //添加到final_rel中 add_path(final_rel, path); } /* * Generate partial paths for final_rel, too,xxwssssssssssssssssss if outer query levels might * be able to make use of them. * 并行执行访问路径 */ if (final_rel->consider_parallel && root->query_level > 1 && !limit_needed(parse)) { Assert(!parse->rowMarks && parse->commandType == CMD_SELECT); foreach(lc, current_rel->partial_pathlist) { Path *partial_path = (Path *) lfirst(lc); add_partial_path(final_rel, partial_path); } } /* * If there is an FDW that's responsible for all baserels of the query, * let it consider adding ForeignPaths. * 如查询中存在FDW,添加ForeignPaths */ if (final_rel->fdwroutine && final_rel->fdwroutine->GetForeignUpperPaths) final_rel->fdwroutine->GetForeignUpperPaths(root, UPPERREL_FINAL, current_rel, final_rel, NULL); /* Let extensions possibly add some more paths */ //通过扩展添加访问路径 if (create_upper_paths_hook) (*create_upper_paths_hook) (root, UPPERREL_FINAL, current_rel, final_rel, NULL); /* Note: currently, we leave it to callers to do set_cheapest() */ //注意:目前的做法是让调用放来执行set_cheap()函数 }
到此,关于“PostgreSQL中grouping_planner函数有什么作用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。