温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Jupyter Notebook怎么实现从IB接口历史数据获取及写入数据库、策略回测和实盘交易

发布时间:2021-12-04 15:35:11 来源:亿速云 阅读:250 作者:柒染 栏目:编程语言

本篇文章给大家分享的是有关Jupyter Notebook怎么实现从IB接口历史数据获取及写入数据库、策略回测和实盘交易,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

刚好有个同学问怎么实现IB盈透历史数据获取,和策略回测和实盘交易。想着熟悉vnpy2.0操作,就用Jupyter Notebook都是跑了一边。VNPY2.0的整体架构设计很有扩展性,而且调用也比起v1.0先进清晰很多,引擎加载调用非常方便。

讲讲注意点:

  1. IB盈透接口历史数据大多是要收费订阅的,如果收费会有报错信息提示,这里找个免费的作为使用。另外vnpy是按照最大6个月历史数据设计的。

  2. 数据库定义有个小坑,我是用mongodb的,在第一次填写 trader/setting.py中密码写错了,后面在trader/setting.py改发现怎么也改不好;原来当第一次维护后,配置会写入.vntrader/vt_setting,之后系统只会去.vntrader/vt_setting读取。去改vt_setting,而不是trader/setting.py。

  3. 使用CtaStrategyApp支持加入新策略,系统会自动输出json保持策略信息;所以第二次运行代码时候,会提示已经有了,不是问题。

  4. 我在代码里面把回测和实盘放在一次,如果直接跑下来可能会报错,建议跑实盘时候先注释的回测。

  5. 使用script_engine订阅历史数据是是默认从rqdata获取,vnpy v2.07 IB接口已经提供历史数据获取,这里创建HistoryRequest用main_engine来获取,

为了方便贴出来,改成.py代码格式,直接跑也没有问题。

from vnpy.app.script_trader import init_cli_trading
from vnpy.app.script_trader.cli import process_log_event
from vnpy.gateway.ib import IbGateway
from time import sleep
from datetime import datetime
import pandas as pd
# 连接到服务器
setting = {
    "TWS地址": "127.0.0.1",
    "TWS端口": 7497,
    "客户号":8 #每个链接用一个独立的链接号,一个IBAPI支持32个来同时链接
}
engine = init_cli_trading([IbGateway]) #返回Script_engine 示例,并且给main_engine注册了gateway
engine.connect_gateway(setting, "IB") #链接
# 查询资金 - 自动
sleep(10)
print("***查询资金和持仓***")
print(engine.get_all_accounts(use_df = True))
# 查询持仓
print(engine.get_all_positions(use_df = True))
# 订阅行情
from vnpy.trader.constant import Exchange
from vnpy.trader.object import SubscribeRequest
# 从我测试直接用Script_engine有问题,IB的品种太多,get_all_contracts命令不行,需要指定具体后才可以,这里使用main_engine订阅
req1 = SubscribeRequest("12087792",Exchange.IDEALPRO) #创建行情订阅
engine.main_engine.subscribe(req1,"IB")
# 使用script_engine订阅历史数据是从rqdata获取,vnpy v2.07已经提供历史数据获取,这里创建HistoryRequest来获取,
# 查询如果没有endtime,默认当前。返回历史数据输出到数据库和csv文件
# 关于api更多信息可以参见 https://interactivebrokers.github.io/tws-api/historical_bars.html
print("***从IB读取历史数据, 返回历史数据输出到数据库和csv文件***")
from vnpy.trader.object import HistoryRequest
from vnpy.trader.object import Interval
start = datetime.strptime('20190901', "%Y%m%d")
historyreq = HistoryRequest(
   symbol="12087792",
   exchange=Exchange.IDEALPRO,
   start=start,
   interval=Interval.MINUTE
)
# # 读取历史数据,并把历史数据BarData放入数据库
bardatalist = engine.main_engine.query_history(historyreq,"IB")
from vnpy.trader.database import database_manager
database_manager.save_bar_data(bardatalist)
# 把历史数据BarData输出到csv
pd.DataFrame(bardatalist).to_csv("C:\Project\\"+ str(historyreq.symbol) + ".csv" , index=True, header=True)
print("History data export to CSV")
# # 参考backtesting.ipynb, 使用自带的双均线策略回测,10日上穿60日做多,否则反之
print("***从数据库读取历史数据, 进行回测***")
from vnpy.app.cta_strategy.backtesting import BacktestingEngine
from vnpy.app.cta_strategy.strategies.double_ma_strategy import (
   DoubleMaStrategy,
)
btengine = BacktestingEngine() #新建回测引擎
btengine.set_parameters(
    vt_symbol="12087792.IDEALPRO",
    interval="1m",
    start=datetime(2019, 9, 1),
    end=datetime(2019, 10, 5),
    rate = 0,
    slippage=0.00005,
    size=1000,
    pricetick=0.00005,
    capital=1_000_000,
)
btengine.add_strategy(DoubleMaStrategy, {"fast_window":10, "slow_window": 60})
btengine.load_data()
btengine.run_backtesting()
df = btengine.calculate_result()
btengine.calculate_statistics()
btengine.show_chart()
# 给script_engine载入双均线策略,实盘运行
print("***从数据库读取准备数据, 实盘运行***")
# 使用cta交易引擎
from vnpy.app.cta_strategy import CtaStrategyApp
from vnpy.app.cta_strategy.base import EVENT_CTA_LOG
engine.event_engine.register(EVENT_CTA_LOG, process_log_event)
cta_engine = engine.main_engine.add_app(CtaStrategyApp) #加入app
cta_engine.init_engine()
cta_engine.add_strategy("DoubleMaStrategy","DoubleMaStrategy_IB_12087792_v1", "12087792.IDEALPRO",{"fast_window":10, "slow_window": 50})
sleep(10)
cta_engine.init_strategy("DoubleMaStrategy_IB_12087792_v1")
sleep(10)
cta_engine.start_strategy("DoubleMaStrategy_IB_12087792_v1")

以上就是Jupyter Notebook怎么实现从IB接口历史数据获取及写入数据库、策略回测和实盘交易,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI