这篇文章主要介绍“Shard-Jdbc数据库扩容的场景和问题的解决方法”,在日常操作中,相信很多人在Shard-Jdbc数据库扩容的场景和问题的解决方法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Shard-Jdbc数据库扩容的场景和问题的解决方法”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
互联网项目中有很多“数据量大,业务复杂度高,需要分库分表”的业务场景。
这样分层的架构
(1)上层是业务层biz,实现业务逻辑封装;
(2)中间是服务层service,封装数据访问;
(3)下层是数据层db,存储业务数据;
当数据量持续新增,面临着这样一些需求,两台数据库无法容纳,需要数据库扩容,这里选择2台—扩容到3台的模式,如下图:
这样扩容的问题
(1)分库分表的策略导致数据迁移量大;
(2)影响数据的持续服务性;
(3)指定时间完成,技术压力大,容易导致预想不到的错误;
如何平稳不停机迁移数据,保证系统持续服务,是本文将要讨论的问题。
(1)分库分表基于MySQL数据库,使用shard-jdbc中间件
(2)该方案的思路整体基于SpringCloud微服务架构
(1)扩容情况下不需要暂停服务;
(2)数据迁移的压力小,不需要指定时间;
方案描述
基于两台数据库分库分表,简称:服务二
基于三台数据库分库分表,简称:服务三
(1)提供两套服务,服务二和服务三
(2)数据库扩容后,如果访问服务三直接获取到数据,流程结束。
(3)如果访问服务三获取不到数据,则访问服务二获取数据。
(4)在迁移开始的一段时间内,访问压力还会在服务二上面。
(5)这样就做到数据访问服务不会停机。
(6)这种访问模式基于SpringCloud很容易做到。
方案描述
(1)关闭基于两台库的数据入库流程
(2)开启基于三台库的数据入库流程,这样新入库数据就可以被服务三直接访问到。
(3)开发数据迁移中间件,扫描原先两台库的数据。
(4)扫描的数据根据分三台库策略判断是否需要迁移。
(5)如果数据需要迁移,则调用服务三的数据入库接口。
(6)数据迁移完成后,删除原来的位置的数据。
(7)这种迁移模式基于SpringCloud很容易做到。
(1)整个过程是持续对线上提供服务;
(2)数据迁移中间件的开发复杂度较低;
(3)可以限速慢慢迁移,没有时间压力;
GitHub·地址 https://github.com/cicadasmile/spring-cloud-base GitEE·地址 https://gitee.com/cicadasmile/spring-cloud-base
到此,关于“Shard-Jdbc数据库扩容的场景和问题的解决方法”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。