温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python中序列化与反序列化的区别有哪些

发布时间:2020-11-09 16:49:40 来源:亿速云 阅读:303 作者:Leah 栏目:开发技术

Python中序列化与反序列化的区别有哪些?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

序列化是将对象的状态信息转换为可以存储或传输的形式的过程。在序列化期间,对象将其当前状态(存在内存中)写入到临时或持久性存储区(硬盘)。以后,可以通过从存储区中读取或反序列化对象的状态,重新创建该对象。

实现对象的序列化和反序列化在python中有两种方式:json 和 pickle。

其中json用于字符串 和 python数据类型间进行转换,pickle用于python特有的类型 和 python的数据类型间进行转换,pickle是python特有的。

1、JSON序列化:json.dumps()

info = {
  "name":"tj",
  "age":22
}
import json
print(info)
print(type(info))
print(json.dumps(info))
print(type(json.dumps(info)))

f = open("test.txt","w")
# f.write(info)  # TypeError: write() argument must be str, not dict
f.write(json.dumps(info)) # 正常写入文件 f.write(json.dumps(info)) 等价于 json.dump(info, f)
f.close()

>>>
{'name': 'tj', 'age': 22}
<class 'dict'>
{"name": "tj", "age": 22}
<class 'str'>

2、JSON反序列化:json.loads()

f = open("test.txt","r")
# print(f.read()["age"]) #TypeError: string indices must be integers
data = json.loads(f.read()) # data = json.loads(f.read()) 等价于 data = json.load(f)
print(data["age"])
f.close()

>>>
22

注意:对于以下这种情况json就不能处理了

import json
def hello(name):
  print("hello,",name)
info = {
  "name":"tj",
  "age":22,
  "func":hello
}
f = open("test2.txt","w")
f.write(json.dumps(info)) #TypeError: Object of type function is not JSON serializable
f.close()

所以:json用于字符串 和 python数据类型间进行转换

3、pickle序列化:pickle.dumps()

import pickle
def hello(name):
  print("hello,",name)
info = {
  "name":"tj",
  "age":22,
  "func":hello
}

print(pickle.dumps(info)) #可见pickle序列化的结果输出为二进制,所以应使用wb的方式往文件中写
f = open("test2.txt","wb")
f.write(pickle.dumps(info)) # 等价于 pickle.dump(info,f)
f.close()

>>>
b'\x80\x04\x957\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x04name\x94\x8c\x04alex\x94\x8c\x03age\x94K\x16\x8c\x04func\x94\x8c\x08__main__\x94\x8c\x05hello\x94\x93\x94u.'

对于函数hello,序列化的不是内存地址,而是整个数据对象,函数可以序列化。

4、pickle反序列化:pickle.loads()

f = open("test2.txt","rb")
data = pickle.loads(f.read()) # 等价于data = pickle.load(f)
print(data)
print(data["name"])
print(data["func"])

>>>
{'name': 'tj', 'age': 22, 'func': <function hello at 0x00000179EF69C040>}
tj
<function hello at 0x00000179EF69C040>

5、多次序列化与反序列化

1)json

import json
info = {
  "name":"tj",
  "age":22
}

f = open("test3.txt","w")
f.write(json.dumps(info))
info['age'] = 21
f.write(json.dumps(info))
f.close()
# 
>>>
序列化两次后test3中的内容
test3.txt: {"name": "tj", "age": 22}{"name": "tj", "age": 21}

f = open("test3.txt","r")
# 报错,py3以上,多次dumps的文件反序列化报错,py2多次dumps的文件也能被反序列化,先序列化的先被反序列化
data = json.loads(f.read()) # json.decoder.JSONDecodeError
f.close()
print(data)

2)pickle

import pickle

info = {
  "name":"tj",
  "age":22
}

f = open("test2.txt","wb")
f.write(pickle.dumps(info)) # 等价于 pickle.dump(info,f)
info["sex"] = "女"
f.write(pickle.dumps(info)) # 等价于 pickle.dump(info,f)
f.close()

>>>
序列化两次后test2.txt中的内容
test2.txt: &#65533;&#65533;    }&#65533;(&#65533;name攲tj攲age擪u.&#65533;&#65533;%    }&#65533;(&#65533;name攲tj攲age擪&#65533;sex攲濂硵u.

f = open("test2.txt","rb")
data = pickle.loads(f.read()) # 第一次反序列化正常
# data = pickle.loads(f.read()) # 第二次反序列化:EOFError: Ran out of input
print(data)
print(data["age"])
# print(data["sex"]) # KeyError: 'sex'

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI