温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python版本低导致Pip无法使用怎么解决

发布时间:2020-11-05 16:29:46 来源:亿速云 阅读:354 作者:Leah 栏目:开发技术

今天就跟大家聊聊有关Python版本低导致Pip无法使用怎么解决,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

终于下决心把python从2.7升到了3.7。懒人安装当然使用Anaconda。

安装成功,编译成功。但是用pip 安装包的时候提示:

pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available。

原因是python3.7为了安全性考虑,要求使用openssl 1.0.2之后的版本。但是自带的openssl,版本是1.0.1。

解决办法:

重装一下openssl

进入

Anaconda Prompt:

conda install -c anaconda openssl

就一切解决了哈啊哈!完美!

补充知识:Python3使用multiprocessing多进程模块共享变量

在使用Python用CPU跑一个人脸识别的模块,神经网络的计算比较耗时,因为Python GIL的限制,因此这里使用多进程来并行跑数据集。

在多个进程之间共享简单变量

有很多张人脸图片,现在使用8个进程来分别对人脸图片进行识别,但是要知道总的进度和正确率,因此这里要在各个进程之间共享变量。这里需要的只是整型无符号变量。

在对总的进度和准确率进行计算的时候要加锁,防止别的进程改变

在使用 print输出的时候要加锁,因为控制台也是资源,要防止抢占

加锁了之后要记得释放锁

假设8个进程共识别了count张图片,然后正确的图片有correct张。思路如下:

在主进程中声明要共享的count和correct变量,初始化进程的时候传入

在各个进程中识别一张图片count就自增1,识别正确的话correct也要自增1,自增的时候要加锁

控制台输出相关信息的时候也要加锁

# l代表长整型无符号变量
count = multiprocessing.Value('l', 0)
correct = multiprocessing.Value('l', 0)
lock = multiprocessing.Lock()

# 要运行的函数为run(),lis为划分给每个进程的识别图片列表
p = [multiprocessing.Process(target=run, args=(lock, i, count, correct)) for i in lis]

for i in p:
  i.start()
for i in p:
  i.join()

在run函数中:

# 多个线程对共享变量进行操作,加锁
lock.acquire()
# 图片已经识别完毕,总数加一
count.value += 1
# 下面两个if分别为识别正确的情况
if i[0] == 3 and dis >= threshold:
  correct.value += 1
  print("正确率:{0:.5f} 总数:{1} 正确数:{2} 错误数:{3} 参数个数:{4} 向量夹角:{5:.5f} 图片1:{6} 图片2:{7}".format(correct.value/count.value, count.value, correct.value, count.value-correct.value, i[0], dis[0], i[1], i[2]))
  lock.release()
  continue
if i[0] == 4 and dis < threshold:
  correct.value += 1
  print("正确率:{0:.5f} 总数:{1} 正确数:{2} 错误数:{3} 参数个数:{4} 向量夹角:{5:.5f} 图片1:{6} 图片2:{7}".format(correct.value/count.value, count.value, correct.value, count.value-correct.value, i[0], dis[0], i[1], i[2]))
  lock.release()
  continue
print("识别错误:参数个数:{0} 向量夹角:{1} 图片1:{2} 图片2:{3}".format(i[0], dis[0], i[1], i[2]))
# 不要遗漏解锁,否则进程会死锁
lock.release()

在多个进程中共享字典dict

准备把识别过的照片特征缓存起来,因此这里使用字典,key就是照片名称,value就是特征值。在此使用mutiprocessing.Manage()来实现。

manager = multiprocessing.Manager()
# 这个是用来在多个进程中间共享的字典
sync_dict = manager.dict()
# 这个是使用pickle序列化到文件中用的临时字典变量
mem_dict = dict()

# 如果存在字典就载入,使用临时字典中转是因为sysnc_dict直接序列化会在下次加载时导致Manager在多个进程中的连接出现问题
if os.path.exists("./muti_thread_mem.pkl"):
  with open("./muti_thread_mem.pkl", "rb") as f:
    mem_dict = pickle.load(f)
  for i in mem_dict:
    sync_dict[i] = mem_dict[i]

使用multiprocessing.Manager()时就不用加锁了,它本身带有同步的功能。在run函数中直接使用就好了。

if i[1] in sync_dict:
 # 有记录就直接读取缓存
  encoding1 = sync_dict[i[1]]
else:
 # 没记录就计算出来再缓存一下
  face.file = Image.open(prefix+i[1])
  encoding1 = face.encodings
  sync_dict[i[1]] = encoding1
if i[2] in sync_dict:
  encoding2 = sync_dict[i[2]]
else:
  face.file = Image.open(prefix+i[2])
  encoding2 = face.encodings
  sync_dict[i[2]] = encoding2

如果缓存过就直接读取,如果没有缓存过就计算后然后再缓存一下,便于下次读取。大多都是业务的逻辑,没有什么意思。算完了之后在主程序退出之前再缓存到本地就好了。

with open("./muti_thread_mem.pkl", 'wb') as f:
  for k, v in enumerate(sync_dict):
    mem_dict[v] = sync_dict[v]
  if len(mem_dict):
   # 传入的4就是想试一下Python新版本的特性而已,没啥其他意思
    pickle.dump(mem_dict, f, 4)

在Pycharm里面运行代码的时候会碰到一些问题。

使用Pycharm的Python console运行代码的时候会导致一个进程完成任务之后,join等待主线程退出的时候,所有进程都报错pipe broken连接不到Manager的共享字典。但是使用本地Terminal运行的时候,一个进程完成任务后是不会导致其他进程报错的,因此推断这里是Pycharm的坑。

关键字:multiprocessing.Manager()报错pipe broken,进程获取共享变量时异常,导致所有进程退出

调试代码(Pycharm debug模式)的时候也会导致调试过程中进程连接不到Manager的共享字典变量。

这些坑都涉及到Manager在共享变量时使用的客户端/服务端模式,最后socket连接报错,所有进程读取共享变量时报错退出。我这次的解决方式是不要启用Pycharm的Python console来运行代码就好了。

看完上述内容,你们对Python版本低导致Pip无法使用怎么解决有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI