温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Django ORM引发的数据库N+1性能的原因

发布时间:2020-10-28 16:39:26 来源:亿速云 阅读:207 作者:Leah 栏目:开发技术

Django ORM引发的数据库N+1性能的原因?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

背景描述

最近在使用 Django 时,发现当调用 api 后,在数据库同一个进程下的事务中,出现了大量的数据库查询语句。调查后发现,是由于 Django ORM 的机制所引起。

Django Object-Relational Mapper(ORM)作为 Django 比较受欢迎的特性,在开发中被大量使用。我们可以通过它和数据库进行交互,实现 DDL 和 DML 操作.

具体来说,就是使用 QuerySet 对象来检索数据, 而 QuerySet 本质上是通过在预先定义好的 model 中的 Manager 和数据库进行交互。

Manager 是 Django model 提供数据库查询的一个接口,在每个 Model 中都至少存在一个 Manager 对象。但今天要介绍的主角是 QuerySet ,它并不是关键。

为了更清晰的表述问题,假设在数据库有如下的表:

device 表,表示当前网络中纳管的物理设备。

interface 表,表示物理设备拥有的接口。

interface_extension 表,和 interface 表是一对一关系,由于 interface 属性过多,用于存储一些不太常用的接口属性。

class Device(models.Model):
  name = models.CharField(max_length=100, unique=True) # 添加设备时的设备名
  hostname = models.CharField(max_length=100, null=True) # 从设备中获取的hostname
  ip_address = models.CharField(max_length=100, null=True) # 设备管理IP

class Interface(models.Model):
  device = models.ForeignKey(Device, on_delete=models.PROTECT, null=False,related_name='interfaces')) # 属于哪台设备
  name = models.CharField(max_length=100) # 端口名
  collect_status = models.CharField(max_length=30, default='active')
  class Meta:
    unique_together = ("device", "name") # 联合主键
    
class InterfaceExtension(models.Model):
  interface = models.OneToOneField(
    Interface, on_delete=models.PROTECT, null=False, related_name='ex_info')
    
  endpoint_device_id = models.ForeignKey( # 绑定了的终端设备
    Device, db_column='endpoint_device_id',
    on_delete=models.PROTECT, null=True, blank=True)
    
  endpoint_interface_id = models.ForeignKey(
    Interface, db_column='endpoint_interface_id', on_delete=models.PROTECT, # 绑定了的终端设备的接口
    null=True, blank=True)

简单说一下之间的关联关系,一个设备拥有多个接口,一个接口拥有一个拓展属性。

在接口的拓展属性中,可以绑定另一台设备上的接口,所以在 interface_extension 还有两个参考外键。

为了更好的分析 ORM 执行 SQL 的过程,需要将执行的 SQL 记录下来,可以通过如下的方式:

  • 在 django settings 中打开 sql log 的日志
  • MySQL 中打开记录 sql log 的日志

django 中,在 settings.py 中配置如下内容, 就可以在控制台上看到 SQL 执行过程:

DEBUG = True

import logging
l = logging.getLogger('django.db.backends')
l.setLevel(logging.DEBUG)
l.addHandler(logging.StreamHandler())

LOGGING = {
  'version': 1,
  'disable_existing_loggers': False,
  'filters': {
    'require_debug_false': {
      '()': 'django.utils.log.RequireDebugFalse'
    }
  },
  'handlers': {
    'mail_admins': {
      'level': 'ERROR',
      'filters': ['require_debug_false'],
      'class': 'django.utils.log.AdminEmailHandler'
    },'console': {
      'level': 'DEBUG',
      'class': 'logging.StreamHandler',
    },
  },
  'loggers': {
    'django.db': {
      'level': 'DEBUG',
      'handlers': ['console'],
    },
  }
}

或者直接在 MySQL 中配置:

# 查看记录 SQL 的功能是否打开,默认是关闭的:
SHOW VARIABLES LIKE "general_log%";

# 将记录功能打开,具体的 log 路径会通过上面的命令显示出来。
SET GLOBAL general_log = 'ON';

QuerySet

假如要通过 QuerySet 来查询,所有接口的所属设备的名称:

interfaces = Interface.objects.filter()[:5] # hit once database

for interface in interfaces: 
  print('interface_name: ', interface.name,
     'device_name: ', interface.device.name) # hit database again

上面第一句取前 5 条 interface 记录,对应的 raw sql 就是 select * from interface limit 5; 没有任何问题。

但下面取接口所属的设备名时,就会出现反复调用数据库情况:当遍历到一个接口,就会通过获取的 device_id 去数据库查询 device_name. 对应的 raw sql 类似于:select name from device where id = {}.

也就是说,假如有 10 万个接口,就会执行 10 万次查询,性能的消耗可想而知。算上之前查找所有接口的一次查询,合称为 N + 1 次查询问题。

解决方式也很简单,如果使用原生 SQL,通常有两种解决方式:

  • 在第一次查询接口时,使用 join,将 interface 和 device 关联起来。这样仅会执行一次数据库调用。
  • 或者在查询接口后,通过代码逻辑,将所需要的 device_id 以集合的形式收集起来,然后通过 in 语句来查询。类似于 SELECT name FROM device WHERE id in (....). 这样做仅会执行两次 SQL。

具体选择哪种,就要结合具体的场景,比如有无索引,表的大小具体分析了。

回到 QuerySet,那么如何让 QuerySet 解决这个问题呢,同样也有两种解决方法,使用 QuerySet 中提供的 select_related() 或者 prefetch_related() 方法。

select_related

在调用 select_related() 方法时,Queryset 会将所属 Model 的外键关系,一起查询。相当于 raw sql 中的 join . 一次将所有数据同时查询出来。select_related() 主要的应用场景是:某个 model 中关联了外键(多对一),或者有 1 对 1 的关联关系情况。

还拿上面的查找接口的设备名称举例的话:

interfaces = Interface.objects.select_related('device').filter()[:5] # hit once database

for interface in interfaces:
  print('interface_name: ', interface.name,
     'device_name: ', interface.device.name) # don't need to hit database again 

上面的查询 SQL 就类似于:SELECT xx FROMinterface INNER JOIN device ON interface.device_id = device.id limit5,注意这里是 inner join 是因为是非空外键。

select_related() 还支持一个 model 中关联了多个外键的情况:如拓展接口,查询绑定的设备名称和接口名称:

ex_interfaces = InterfaceExtension.objects.select_related(
  'endpoint_device_id', 'endpoint_interface_id').filter()[:5] 

# or

ex_interfaces = InterfaceExtension.objects.select_related(
  'endpoint_device_id').select_related('endpoint_interface_id').filter()[:5]

上面的 SQL 类似于:

SELECT XXX FROM interface_extension LEFT OUTER JOIN device ON (interface_extension.endpoint_device_id=device.id) 
LEFT OUTER JOIN interface ON (interface_extension.endpoint_interface_id=interface.id)
LIMIT 5

这里由于是可空外键,所以是 left join.

如果想要清空 QuerySet 的外键关系,可以通过:queryset.select_related(None) 来清空。

prefetch_related

prefetch_related 和 select_related 一样都是为了避免大量查询关系时的数据库调用。只不过为了避免多表 join 后产生的巨大结果集以及效率问题, 所以 select_related 比较偏向于外键(多对一)和一对一的关系。

而 prefetch_related 的实现方式则类似于之前 raw sql 的第二种,分开查询之间的关系,然后通过 python 代码,将其组合在一起。所以 prefetch_related 可以很好的支持一对多或者多对多的关系。

还是拿查询所有接口的设备名称举例:

interfaces = Interface.objects.prefetch_related('device').filter()[:5] # hit twice database

for interface in interfaces:
  print('interface_name: ', interface.name,
     'device_name: ', interface.device.name) # don't need to hit database again

换成 prefetch_related 后,sql 的执行逻辑变成这样:

  1. "SELECT * FROM interface "
  2. "SELECT * FROM device where device_id in (.....)"
  3. 然后通过 python 代码将之间的关系组合起来。

如果查询所有设备具有哪些接口也是一样:

devices = Device.objects.prefetch_related('interfaces').filter()[:5] # hit twice database
for device in devices:
  print('device_name: ', device.name,
     'interface_list: ', device.interfaces.all())

执行逻辑也是:

  1. "SELECT * FROM device"
  2. "SELECT * FROM interface where device_id in (.....)"
  3. 然后通过 python 代码将之间的关系组合起来。

如果换成多对多的关系,在第二步会变为 join 后在 in,具体可以直接尝试。

但有一点需要注意,当使用的 QuerySet 有新的逻辑查询时, prefetch_related 的结果不会生效,还是会去查询数据库:

如在查询所有设备具有哪些接口上,增加一个条件,接口的状态是 up 的接口

devices = Device.objects.prefetch_related('interfaces').filter()[:5] # hit twice database
for device in devices:
  print('device_name: ', device.name,
     'interfaces:', device.interfaces.filter(collect_status='active')) # hit dababase repeatly

执行逻辑变成:

  • "SELECT * FROM device"
  • "SELECT * FROM interface where device_id in (.....)"
  • 一直重复 device 的数量次: "SELECT * FROM interface where device_id = xx and collect_status='up';"
  • 最后通过 python 组合到一起。

原因在于:之前的 prefetch_related 查询,并不包含判断 collect_status 的状态。所以对于 QuerySet 来说,这是一个新的查询。所以会重新执行。

可以利用 Prefetch 对象 进一步控制并解决上面的问题:

devices = Device.objects.prefetch_related(
  Prefetch('interfaces', queryset=Interface.objects.filter(collect_status='active'))
  ).filter()[:5] # hit twice database
for device in devices:
  print('device_name: ', device.name, 'interfaces:', device.interfaces) 

执行逻辑变成:

  • "SELECT * FROM device"
  • "SELECT * FROM interface where device_id in (.....) and collect_status = 'up';"
  • 最后通过 python 组合到一起。

可以通过 Prefetch 对象的 to_attr,来改变之间关联关系的名称:

devices = Device.objects.prefetch_related(
  Prefetch('interfaces', queryset=Interface.objects.filter(collect_status='active'), to_attr='actived_interfaces')
  ).filter()[:5] # hit twice database
for device in devices:
  print('device_name: ', device.name, 'interfaces:', device.actived_interfaces) 

可以看到通过 Prefetch,可以实现控制关联那些有关系的对象。

最后,对于一些关联结构较为复杂的情况,可以将 prefetch_related 和 select_related 组合到一起,从而控制查询数据库的逻辑。

比如,想要查询全部接口的信息,及其设备名称,以及拓展接口中绑定了对端设备和接口的信息。

queryset = Interface.objects.select_related('ex_info').prefetch_related(
      'ex_info__endpoint_device_id', 'ex_info__endpoint_interface_id')

执行逻辑如下:

  • SELECT XXX FROM interface LEFT OUTER JOIN interface_extension ON (interface.id=interface_extension .interface_id)
  • SELECT XXX FROM device where id in ()
  • SELECT XXX FROM interface where id in ()
  • 最后通过 python 组合到一起。

第一步, 由于 interface 和 interface_extension 是 1 对 1 的关系,所以使用 select_related 将其关联起来。

第二三步:虽然 interface_extension 和 endpoint_device_id 和 endpoint_interface_id 是外键关系,如果继续使用 select_related 则会进行 4 张表连续 join,将其换成 select_related,对于 interface_extension 外键关联的属性使用 in 查询,因为interface_extension 表的属性并不是经常使用的。

总结

在这篇文章中,介绍了 Django N +1 问题产生的原因,解决的方法就是通过调用 QuerySet 的 select_related 或 prefetch_related 方法。

对于 select_related 来说,应用场景主要在外键和一对一的关系中。对应到原生的 SQL 类似于 JOIN 操作。

对于 prefetch_related 来说,应用场景主要在多对一和多对多的关系中。对应到原生的 SQL 类似于 IN 操作。

通过 Prefetch 对象,可以控制 select_related 和 prefetch_related 和那些有关系的对象做关联。

最后,在每个 QuerySet 可以通过组合 select_related 和 prefetch_related 的方式,更改查询数据库的逻辑。

看完上述内容,你们掌握Django ORM引发的数据库N+1性能的原因的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI