温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

使用SpringBoot怎么实现对Xxl-Job进行整合

发布时间:2020-11-23 15:13:48 来源:亿速云 阅读:1403 作者:Leah 栏目:开发技术

本篇文章给大家分享的是有关使用SpringBoot怎么实现对Xxl-Job进行整合,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

一、下载Xxl-Job源代码并导入本地并运行

1.使用Idea或Eclipse导入

2.执行sql脚本(红色标记处)

使用SpringBoot怎么实现对Xxl-Job进行整合

3.运行xxl-job-admin(xxl-job后台管理,主要方便管理各种各样的任务)

注意:在运行之前,需要把2的sql脚本执行完毕,并修改数据库连接池。

正常启动,访问地址为:http://localhost:8080/xxl-job-admin

效果图,如下所示:

使用SpringBoot怎么实现对Xxl-Job进行整合

用户名默认为admin

密码为123456

输入后,进入这个界面,如图:

使用SpringBoot怎么实现对Xxl-Job进行整合

这样就表示Xxl-Job成功运行了。确保运行没问题后,就可以开始下一步。

二、添加执行器(Xxl-Job源代码就一个Example,可以复用过来,你也可以选择自己新建项目,新建项目可以在Xxl-Job基础上,也可以放在其它项目中)

1.新建一个Maven项目,命名为blog-xxl-job。

2.导入Maven依赖

<!-- https://mvnrepository.com/artifact/com.xuxueli/xxl-job-core -->
  <dependency>
   <groupId>com.xuxueli</groupId>
   <artifactId>xxl-job-core</artifactId>
   <version>2.2.0</version>
  </dependency>
  <dependency>
   <groupId>org.springframework.cloud</groupId>
   <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
  </dependency>
  <dependency>
   <groupId>org.springframework.boot</groupId>
   <artifactId>spring-boot-starter-web</artifactId>
  </dependency>

3.新建application.yml配置文件并添加如下内容

#eureka
eureka.client.serviceUrl.defaultZone=http://localhost:8761/eureka/
# web port
server.port=8081
# no web
#spring.main.web-environment=false
# log config
logging.config=classpath:logback.xml
### xxl-job admin address list, such as "http://address" or "http://address01,http://address02"
xxl.job.admin.addresses=http://127.0.0.1:8080/xxl-job-admin
### xxl-job, access token
xxl.job.accessToken=
### xxl-job executor appname
xxl.job.executor.appname=blog-xxl-job-executor
### xxl-job executor registry-address: default use address to registry , otherwise use ip:port if address is null
xxl.job.executor.address=
### xxl-job executor server-info
xxl.job.executor.ip=
xxl.job.executor.port=9999
### xxl-job executor log-path
xxl.job.executor.logpath=/data/applogs/xxl-job/jobhandler
### xxl-job executor log-retention-days
xxl.job.executor.logretentiondays=30

可以不用eureka,这里我的项目中用到eureka所以增加该配置。

增加logback.xml配置:

<&#63;xml version="1.0" encoding="UTF-8"&#63;>
<configuration debug="false" scan="true" scanPeriod="1 seconds">

 <contextName>logback</contextName>
 <property name="log.path" value="/data/applogs/xxl-job/xxl-job-executor-sample-springboot.log"/>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
  <encoder>
   <pattern>%d{HH:mm:ss.SSS} %contextName [%thread] %-5level %logger{36} - %msg%n</pattern>
  </encoder>
 </appender>

 <appender name="file" class="ch.qos.logback.core.rolling.RollingFileAppender">
  <file>${log.path}</file>
  <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
   <fileNamePattern>${log.path}.%d{yyyy-MM-dd}.zip</fileNamePattern>
  </rollingPolicy>
  <encoder>
   <pattern>%date %level [%thread] %logger{36} [%file : %line] %msg%n
   </pattern>
  </encoder>
 </appender>

 <root level="info">
  <appender-ref ref="console"/>
  <appender-ref ref="file"/>
 </root>

</configuration>

4.编写Application类

package com.springcloud.blog.job.execute;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import org.springframework.cloud.netflix.eureka.EnableEurekaClient;

@EnableEurekaClient
@EnableDiscoveryClient
@SpringBootApplication
public class BlogXxlJobExecutorApplication {
 public static void main(String[] args) {
  SpringApplication.run(BlogXxlJobExecutorApplication.class, args);
 }

}

5.编写Job执行器

package com.springcloud.blog.job.execute.jobhandler;

import com.xxl.job.core.biz.model.ReturnT;
import com.xxl.job.core.handler.IJobHandler;
import com.xxl.job.core.handler.annotation.XxlJob;
import com.xxl.job.core.log.XxlJobLogger;
import com.xxl.job.core.util.ShardingUtil;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;

import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.Arrays;
import java.util.concurrent.TimeUnit;

/**
 * XxlJob开发示例(Bean模式)
 * <p>
 * 开发步骤:
 * 1、在Spring Bean实例中,开发Job方法,方式格式要求为 "public ReturnT<String> execute(String param)"
 * 2、为Job方法添加注解 "@XxlJob(value="自定义jobhandler名称", init = "JobHandler初始化方法", destroy = "JobHandler销毁方法")",注解value值对应的是调度中心新建任务的JobHandler属性的值。
 * 3、执行日志:需要通过 "XxlJobLogger.log" 打印执行日志;
 *
 * @author xuxueli 2019-12-11 21:52:51
 */
@Component
public class SampleXxlJob {
 private static Logger logger = LoggerFactory.getLogger(SampleXxlJob.class);


 /**
  * 1、简单任务示例(Bean模式)
  */
 @XxlJob("demoJobHandler")
 public ReturnT<String> demoJobHandler(String param) throws Exception {
  XxlJobLogger.log("XXL-JOB, Hello World.");

  for (int i = 0; i < 5; i++) {
   XxlJobLogger.log("beat at:" + i);
   TimeUnit.SECONDS.sleep(2);
  }
  return ReturnT.SUCCESS;
 }


 /**
  * 2、分片广播任务
  */
 @XxlJob("shardingJobHandler")
 public ReturnT<String> shardingJobHandler(String param) throws Exception {

  // 分片参数
  ShardingUtil.ShardingVO shardingVO = ShardingUtil.getShardingVo();
  XxlJobLogger.log("分片参数:当前分片序号 = {}, 总分片数 = {}", shardingVO.getIndex(), shardingVO.getTotal());

  // 业务逻辑
  for (int i = 0; i < shardingVO.getTotal(); i++) {
   if (i == shardingVO.getIndex()) {
    XxlJobLogger.log("第 {} 片, 命中分片开始处理", i);
   } else {
    XxlJobLogger.log("第 {} 片, 忽略", i);
   }
  }

  return ReturnT.SUCCESS;
 }


 /**
  * 3、命令行任务
  */
 @XxlJob("commandJobHandler")
 public ReturnT<String> commandJobHandler(String param) throws Exception {
  String command = param;
  int exitValue = -1;

  BufferedReader bufferedReader = null;
  try {
   // command process
   Process process = Runtime.getRuntime().exec(command);
   BufferedInputStream bufferedInputStream = new BufferedInputStream(process.getInputStream());
   bufferedReader = new BufferedReader(new InputStreamReader(bufferedInputStream));

   // command log
   String line;
   while ((line = bufferedReader.readLine()) != null) {
    XxlJobLogger.log(line);
   }

   // command exit
   process.waitFor();
   exitValue = process.exitValue();
  } catch (Exception e) {
   XxlJobLogger.log(e);
  } finally {
   if (bufferedReader != null) {
    bufferedReader.close();
   }
  }

  if (exitValue == 0) {
   return IJobHandler.SUCCESS;
  } else {
   return new ReturnT<String>(IJobHandler.FAIL.getCode(), "command exit value(" + exitValue + ") is failed");
  }
 }


 /**
  * 4、跨平台Http任务
  * 参数示例:
  * "url: http://www.baidu.com\n" +
  * "method: get\n" +
  * "data: content\n";
  */
 @XxlJob("httpJobHandler")
 public ReturnT<String> httpJobHandler(String param) throws Exception {

  // param parse
  if (param == null || param.trim().length() == 0) {
   XxlJobLogger.log("param[" + param + "] invalid.");
   return ReturnT.FAIL;
  }
  String[] httpParams = param.split("\n");
  String url = null;
  String method = null;
  String data = null;
  for (String httpParam : httpParams) {
   if (httpParam.startsWith("url:")) {
    url = httpParam.substring(httpParam.indexOf("url:") + 4).trim();
   }
   if (httpParam.startsWith("method:")) {
    method = httpParam.substring(httpParam.indexOf("method:") + 7).trim().toUpperCase();
   }
   if (httpParam.startsWith("data:")) {
    data = httpParam.substring(httpParam.indexOf("data:") + 5).trim();
   }
  }

  // param valid
  if (url == null || url.trim().length() == 0) {
   XxlJobLogger.log("url[" + url + "] invalid.");
   return ReturnT.FAIL;
  }
  if (method == null || !Arrays.asList("GET", "POST").contains(method)) {
   XxlJobLogger.log("method[" + method + "] invalid.");
   return ReturnT.FAIL;
  }

  // request
  HttpURLConnection connection = null;
  BufferedReader bufferedReader = null;
  try {
   // connection
   URL realUrl = new URL(url);
   connection = (HttpURLConnection) realUrl.openConnection();

   // connection setting
   connection.setRequestMethod(method);
   connection.setDoOutput(true);
   connection.setDoInput(true);
   connection.setUseCaches(false);
   connection.setReadTimeout(5 * 1000);
   connection.setConnectTimeout(3 * 1000);
   connection.setRequestProperty("connection", "Keep-Alive");
   connection.setRequestProperty("Content-Type", "application/json;charset=UTF-8");
   connection.setRequestProperty("Accept-Charset", "application/json;charset=UTF-8");

   // do connection
   connection.connect();

   // data
   if (data != null && data.trim().length() > 0) {
    DataOutputStream dataOutputStream = new DataOutputStream(connection.getOutputStream());
    dataOutputStream.write(data.getBytes("UTF-8"));
    dataOutputStream.flush();
    dataOutputStream.close();
   }

   // valid StatusCode
   int statusCode = connection.getResponseCode();
   if (statusCode != 200) {
    throw new RuntimeException("Http Request StatusCode(" + statusCode + ") Invalid.");
   }

   // result
   bufferedReader = new BufferedReader(new InputStreamReader(connection.getInputStream(), "UTF-8"));
   StringBuilder result = new StringBuilder();
   String line;
   while ((line = bufferedReader.readLine()) != null) {
    result.append(line);
   }
   String responseMsg = result.toString();

   XxlJobLogger.log(responseMsg);
   return ReturnT.SUCCESS;
  } catch (Exception e) {
   XxlJobLogger.log(e);
   return ReturnT.FAIL;
  } finally {
   try {
    if (bufferedReader != null) {
     bufferedReader.close();
    }
    if (connection != null) {
     connection.disconnect();
    }
   } catch (Exception e2) {
    XxlJobLogger.log(e2);
   }
  }

 }

 /**
  * 5、生命周期任务示例:任务初始化与销毁时,支持自定义相关逻辑;
  */
 @XxlJob(value = "demoJobHandler2", init = "init", destroy = "destroy")
 public ReturnT<String> demoJobHandler2(String param) throws Exception {
  XxlJobLogger.log("XXL-JOB, Hello World.");
  return ReturnT.SUCCESS;
 }

 public void init() {
  logger.info("init");
 }

 public void destroy() {
  logger.info("destory");
 }


}

6.增加XxlJobConfig配置类

package com.springcloud.blog.job.execute.core.config;

import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class XxlJobConfig {
 private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);

 @Value("${xxl.job.admin.addresses}")
 private String adminAddresses;

 @Value("${xxl.job.accessToken}")
 private String accessToken;

 @Value("${xxl.job.executor.appname}")
 private String appname;

 @Value("${xxl.job.executor.address}")
 private String address;

 @Value("${xxl.job.executor.ip}")
 private String ip;

 @Value("${xxl.job.executor.port}")
 private int port;

 @Value("${xxl.job.executor.logpath}")
 private String logPath;

 @Value("${xxl.job.executor.logretentiondays}")
 private int logRetentionDays;


 @Bean
 public XxlJobSpringExecutor xxlJobExecutor() {
  logger.info(">>>>>>>>>>> xxl-job config init.");
  XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
  xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
  xxlJobSpringExecutor.setAppname(appname);
  xxlJobSpringExecutor.setAddress(address);
  xxlJobSpringExecutor.setIp(ip);
  xxlJobSpringExecutor.setPort(port);
  xxlJobSpringExecutor.setAccessToken(accessToken);
  xxlJobSpringExecutor.setLogPath(logPath);
  xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);

  return xxlJobSpringExecutor;
 }


}

三、结合Xxl-Job后台系统增加定时任务

1.配置执行器

使用SpringBoot怎么实现对Xxl-Job进行整合

执行器地址为(与blog-xxl-job中application.yml配置文件里的执行器地址需要保持一致,否则会注册失败,导致任务执行不了:

使用SpringBoot怎么实现对Xxl-Job进行整合

2.添加任务

使用SpringBoot怎么实现对Xxl-Job进行整合

3.任务执行成功的标志

使用SpringBoot怎么实现对Xxl-Job进行整合

四、为什么选择Xxl-Job

当初选择使用Xxl-Job有这么几个原因:

第一、团队里有好几个人上一家公司或上上家公司用过。

第二、这个生态比较丰富且开源。

第三、确实非常容易上手且轻量化(轻量化的一个体现就是非侵入式)

以上就是使用SpringBoot怎么实现对Xxl-Job进行整合,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI