本篇内容介绍了“分布式缓存能不能被用作NoSQL数据库”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
分布式缓存能被用作NoSQL数据库吗
InfoQ:你能否就分布式缓存解决方案与NoSQL数据库做个对比?
Greg Luck:分布式缓存通常会把数据放在内存里,用于降低延时。NoSQL数据库是没有R的DBMS(即没有关系的数据库管理系统),一般也缺乏对事务和其他高级特性的支持。对于不支持关系的系统,表关系的关联是SQL里最麻烦的部分,这也正是NoSQL这个名字的起源。
其中一种NoSQL数据库是键值存储。典型的例子包括Dynamo、Oracle NoSQL Database和Redis。缓存也是键值存储,因此说这两者是相关的。很多缓存实现能被配置为可持久化的,之所以很多时候不那么做,是因为缓存是要提升性能而不是做持久化。而NoSQL数据库则与此相反,它是用来做持久化的。
持久化缓存也可当作键值NoSQL数据库来使用。NoSQL也提到了Big Data,通常是指比能放进一个单独的RDBMS节点的量要大的数据,一般从几TB到几PB。
分布式缓存通常用于降低事务性数据的延时,这些数据开始时并不大,但慢慢就会往Big Data这个方向发展。由于缓存将数据保存在内存里,这提高了存储的成本,而且需要限制数据的大小。如果依赖于堆存储,每个服务器节点可能只有可怜的2GB。如果依赖于分布式缓存,Ehcache还提供了堆外存储,每台服务器可以存储几百GB数据,可以用作TB级别的缓存。
持久化、分布式的缓存可以适用于一些NoSQL的场景。NoSQL数据库也可以应对一些缓存的场景,只是延时稍高而已。
InfoQ:从架构角度来看,分布式缓存和NoSQL数据库有什么相似之处吗?
Greg:它们都想提供优于RDBMS的TPS和可扩展性。为此,它们都在功能上做了简化,抛开了那些麻烦的问题,比如表关联、存储过程和ACID事务。
虽然Java缓存领域里有JSR 107,它为Spring和Java EE程序员提供了一套标准的缓存API,但是比起标准化接口,它们都更倾向于使用私有接口。
它们都采用对客户端透明的方式对数据进行分区,做向外扩展。非Java产品向上扩展做得也很好。拥有Terracotta BigMemory,我们在Java平台上的向上扩展方面也做得很特别。最后,两者都可以部署在常见的硬件和操作系统上,这让它们都能理想地运行于云端。
InfoQ:架构上这两项技术又有何不同呢?
Greg:NoSQL和RDBMS通常使用的是磁盘。磁盘是机械设备,延时很厉害,因为寻道时间是磁头移动到正确的磁道的时间,读写时间依赖于磁盘的RPM。NoSQL尝试优化磁盘的使用,例如,仅仅在磁头当前位置追加日志,偶尔才刷新到磁盘上。相反,缓存主要都把数据放内存里。
NoSQL和RDBMS的客户端很薄(想想Thrift或JDBC),只是在网络中传输数据,而像Ehcache这样的缓存使用进程内存储和远程存储,因此常用请求在本地就能被成功处理。在分布式缓存上下文中,每个应用程序服务器的进程内存储中都会缓存热点数据,增加服务器数量并不会增加网络或后端的负载。
RDBMS专注于成为通用的SOR(System of Record)。NoSQ希望成为某类特定数据类型的SOR,比如键值对、文档、稀疏表(宽表)或图。缓存着眼于性能,一般会与RDBMS或NoSQL数据库结合使用,数据类型就是SOR。往往缓存中会存储Web服务调用的结果,业务对象的计算结果,这个结果可能需要成百SOR调用才能得到。
像Ehcache这样的缓存部分运行在应用程序的操作系统进程里,部分运行在网络那头自己机器的进程里。但也不是全部分布式缓存都这样:memcache就是一个例子,所有的数据都跨网络存储。
InfoQ:哪类应用程序最适合这种方式?
Greg:这还得从先前的问题说起,要将分布式缓存用于你现有的应用程序,通常只需要很小的工作量,而NoSQL则需要做很多事,还有大的架构变更。
因此适用分布式缓存的第一类应用程序是现有系统,特别是有以下需要的:
由于使用量或负载激增而需要向外扩展
为达到SLA而需要有更低的延时
为了将大型机这样的昂贵基础设施的使用减到最低
减少Web服务调用而带来的费用
应对极端负载高峰(比如黑色星期五一样的促销)
分布式缓存能被用作NoSQL数据库吗
InfoQ:这种方式有什么局限么?
Greg:缓存,置于内存之中,在大小上有制约,它们的技术局限受限于有多少内存给它们使用(下面还会具体展开说明)。
缓存,就算它提供持久化功能,也未必算的上作为SOR的上选。缓存故意回避了备份到磁盘和从中还原的复杂功能,尽管也有简单的。RDMBS在过去30年里开发了丰富的备份、还原、迁移、报表和ETL特性。而NoSQL则介于两者之间。
缓存提供了改变数据与访问数据的编程API。NoSQL和RDBMS则提供了工具,可以执行脚本化语言(比如SQL、UnSQL和Thrift)。
但关键一点是要记住缓存并不想成为你的SOR。它能轻松地与你的RDBMS和睦相处,为此它并不需要RDBMS所有用的复杂功能。
InfoQ:以后分布式缓存解决方案、NoSQL数据库和传统RDBMS互相协同工作,你有何看法?
Greg:速度大幅快于RDBMS,依赖于部署拓扑的NoSQL,还有数据访问模式,分布式缓存可以位于这三者之间的任意位置。那些需要更低延时的人可以将缓存作为NoSQL的一个补充,就像现在对待RDBMS那样。
稍有不同的是,在你想将RDBMS扩展到多个节点时,经常会难于扩展,或者影响编程契约,或者受制于CAP做出权衡;而使用NoSQL,就算只使用一个节点,你也可以简单地将其视为多节点安装。如果是向上扩展就没有这些问题。在RDBMS中,添加缓存是为了避免向外扩展会遇到的麻烦。通常缓存能解决系统的容量问题,你不用费太多力气。因此当需要向外扩展时,加入缓存吧。
对于NoSQL而言,内建了向外扩展的能力,在需要低延时的时候使用缓存吧。
“分布式缓存能不能被用作NoSQL数据库”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。