温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么在python中利用opencv实现一个高斯平滑效果

发布时间:2020-12-19 13:45:26 来源:亿速云 阅读:363 作者:Leah 栏目:开发技术

这期内容当中小编将会给大家带来有关怎么在python中利用opencv实现一个高斯平滑效果,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

假设一个列数为W,行数为H的高斯卷计算子gaussKernel,其中W,H均为奇数,描点位置在((H-1)/2 ,(W-1)/2),构建高斯卷积核的步骤如下

1.计算高斯矩阵

怎么在python中利用opencv实现一个高斯平滑效果

2.计算高斯矩阵的和

怎么在python中利用opencv实现一个高斯平滑效果

3.高斯矩阵除以其本身的和,也就是归一化

怎么在python中利用opencv实现一个高斯平滑效果

下面利用Python来实现构建高斯卷积算子

def getGaussKernel(sigma, H, W):
  r, c = np.mgrid[0:H:1, 0:W:1]
  r -= (H - 1) / 2
  c -= (W - 1) / 2
  gaussMatrix = np.exp(-0.5 * (np.power(r) + np.power(c)) / math.pow(sigma, 2))
  # 计算高斯矩阵的和
  sunGM = np.sum(gaussMatrix)
  # 归一化
  gaussKernel = gaussMatrix / sunGM
  return gaussKernel

高斯卷积核可以分离成一维水平方向上的高斯核和一维垂直方向上的高斯核,在OpenCV中给出了构建一维垂直方向上的高斯卷积核的函数:
Mat getGaussianKernel(int ksize, double sigma, in ktype = CV/_64F)

参数释意
ksize一维垂直方向上的高斯核行数,正奇数
sigma标准差
ktype返回值的数据类型为CV_32F或CV_64F,默认是CV_64F

下面通过Python代码来具体的实现图像的高斯平滑,我们首先会对图像水平方向进行卷积,然后再对垂直方向进行卷积,其中sigma代表高斯卷积核的标准差

def gaussBlur(image,sigma,H,W,_boundary = 'fill', _fillvalue = 0):
  #水平方向上的高斯卷积核
  gaussKenrnel_x = cv2.getGaussianKernel(sigma,W,cv2.CV_64F)
  #进行转置
  gaussKenrnel_x = np.transpose(gaussKenrnel_x)
  #图像矩阵与水平高斯核卷积
  gaussBlur_x = signal.convolve2d(image,gaussKenrnel_x,mode='same',boundary=_boundary,fillvalue=_fillvalue)
  #构建垂直方向上的卷积核
  gaussKenrnel_y = cv2.getGaussianKernel(sigma,H,cv2.CV_64F)
  #图像与垂直方向上的高斯核卷积核
  gaussBlur_xy = signal.convolve2d(gaussBlur_x,gaussKenrnel_y,mode='same',boundary= _boundary,fillvalue=_fillvalue)
  return gaussBlur_xy
if __name__ == "__main__":
  image = cv2.imread("../images/timg.jpg", cv2.IMREAD_GRAYSCALE)
  cv2.imshow("image",image)
  #高斯平滑
  blurImage = gaussBlur(image, 5, 400, 400, 'symm')
  #对bIurImage进行灰度级显示
  blurImage = np.round(blurImage)
  blurImage = blurImage.astype(np.uint8)
  cv2.imshow("GaussBlur", blurImage)
  cv2.waitKey(0)
  cv2.destroyAllWindows()

上述就是小编为大家分享的怎么在python中利用opencv实现一个高斯平滑效果了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI