温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

scikit-learn怎么在Python中使用

发布时间:2021-01-29 15:06:11 来源:亿速云 阅读:262 作者:Leah 栏目:开发技术

这篇文章将为大家详细讲解有关scikit-learn怎么在Python中使用,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

sklearn官方文档的类容和结构如下:

scikit-learn怎么在Python中使用

sklearn是基于numpy和scipy的一个机器学习算法库,设计的非常优雅,它让我们能够使用同样的接口来实现所有不同的算法调用。

sklearn库的四大机器学习算法:分类,回归,聚类,降维。其中:

  • 常用的回归:线性、决策树、SVM、KNN ;集成回归:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees

  • 常用的分类:线性、决策树、SVM、KNN,朴素贝叶斯;集成分类:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees

  • 常用聚类:k均值(K-means)、层次聚类(Hierarchical clustering)、DBSCAN

  • 常用降维:LinearDiscriminantAnalysis、PCA

     还包含了特征提取、数据处理和模型评估三大模块。
     同时sklearn内置了大量数据集,节省了获取和整理数据集的时间。 
使用sklearn进行机器学习的步骤一般分为:导入模块-创建数据-建立模型-训练-预测五步。
以下为代码笔记

一、数据获取
*****************
"""
 
##1.1 导入sklearn数据集
from sklearn import datasets
 
iris = datasets.load.iris() #导入数据集
X = iris.data  #获得其特征向量
y = iris.target # 获得样本label
 
##1.2 创建数据集
from sklearn.datasets.samples_generator import make_classification
 
X, y = make_classification(n_samples=6, n_features=5, n_informative=2,
  n_redundant=2, n_classes=2, n_clusters_per_class=2, scale=1.0,
  random_state=20)
 
# n_samples:指定样本数
# n_features:指定特征数
# n_classes:指定几分类
# random_state:随机种子,使得随机状可重
 
# 查看数据集
for x_,y_ in zip(X,y):
  print(y_,end=': ')
  print(x_)
"""
0: [-0.6600737 -0.0558978  0.82286793 1.1003977 -0.93493796]
1: [ 0.4113583  0.06249216 -0.90760075 -1.41296696 2.059838 ]
1: [ 1.52452016 -0.01867812 0.20900899 1.34422289 -1.61299022]
0: [-1.25725859 0.02347952 -0.28764782 -1.32091378 -0.88549315]
0: [-3.28323172 0.03899168 -0.43251277 -2.86249859 -1.10457948]
1: [ 1.68841011 0.06754955 -1.02805579 -0.83132182 0.93286635]
"""
 
"""
*****************
二、数据预处理
*****************
"""
from sklearn import preprocessing
 
##2.1 数据归一化
data = [[0, 0], [0, 0], [1, 1], [1, 1]]
# 1. 基于mean和std的标准化
scaler = preprocessing.StandardScaler().fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
 
# 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来
 
#2.2 正则化
X = [[ 1., -1., 2.],
  [ 2., 0., 0.],
  [ 0., 1., -1.]]
X_normalized = preprocessing.normalize(X, norm='l2')
 
print(X_normalized)
"""                  
array([[ 0.40..., -0.40..., 0.81...],
    [ 1. ..., 0. ..., 0. ...],
    [ 0. ..., 0.70..., -0.70...]])
"""
 
## 2.3 One-Hot编码
data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
enc.transform(data).toarray()
 
"""
*****************
三、数据集拆分
*****************
"""
# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split
 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签
 
test_size:
  float-获得多大比重的测试样本 (默认:0.25)
  int - 获得多少个测试样本
 
train_size: 同test_size
 
random_state:
  int - 随机种子(种子固定,实验可复现)
  
shuffle - 是否在分割之前对数据进行洗牌(默认True)
 
返回
---
分割后的列表,长度=2*len(arrays),
  (train-test split)
"""
 
"""
*****************
四、定义模型
*****************
"""
## 模型常用属性和工鞥呢
# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test)
 
# 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc
 
## 4.1 线性回归
from sklearn.linear_model import LinearRegression
# 定义线性回归模型
model = LinearRegression(fit_intercept=True, normalize=False,
  copy_X=True, n_jobs=1)
"""
参数
---
  fit_intercept:是否计算截距。False-模型没有截距
  normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
   n_jobs:指定线程数
"""
 
## 4.2 逻辑回归
from sklearn.linear_model import LogisticRegression
# 定义逻辑回归模型
model = LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0,
  fit_intercept=True, intercept_scaling=1, class_weight=None,
  random_state=None, solver='liblinear', max_iter=100, multi_class='ovr',
  verbose=0, warm_start=False, n_jobs=1)
 
"""参数
---
  penalty:使用指定正则化项(默认:l2)
  dual: n_samples > n_features取False(默认)
  C:正则化强度的反,值越小正则化强度越大
  n_jobs: 指定线程数
  random_state:随机数生成器
  fit_intercept: 是否需要常量
"""
 
## 4.3 朴素贝叶斯算法NB
from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
  alpha:平滑参数
  fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
  class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
  binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""
 
## 4.4 决策树DT
from sklearn import tree
model = tree.DecisionTreeClassifier(criterion='gini', max_depth=None,
  min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
  max_features=None, random_state=None, max_leaf_nodes=None,
  min_impurity_decrease=0.0, min_impurity_split=None,
   class_weight=None, presort=False)
"""参数
---
  criterion :特征选择准则gini/entropy
  max_depth:树的最大深度,None-尽量下分
  min_samples_split:分裂内部节点,所需要的最小样本树
  min_samples_leaf:叶子节点所需要的最小样本数
  max_features: 寻找最优分割点时的最大特征数
  max_leaf_nodes:优先增长到最大叶子节点数
  min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""
 
 
## 4.5 支持向量机
from sklearn.svm import SVC
model = SVC(C=1.0, kernel='rbf', gamma='auto')
"""参数
---
  C:误差项的惩罚参数C
  gamma: 核相关系数。浮点数,If gamma is ‘auto' then 1/n_features will be used instead.
"""
 
## 4.6 k近邻算法 KNN
from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
---
  n_neighbors: 使用邻居的数目
  n_jobs:并行任务数
"""
 
## 4.7 多层感知机
from sklearn.neural_network import MLPClassifier
# 定义多层感知机分类算法
model = MLPClassifier(activation='relu', solver='adam', alpha=0.0001)
"""参数
---
  hidden_layer_sizes: 元祖
  activation:激活函数
  solver :优化算法{‘lbfgs', ‘sgd', ‘adam'}
  alpha:L2惩罚(正则化项)参数。
"""
 
 
"""
*****************
五、模型评估与选择
*****************
"""
 
## 5.1 交叉验证
from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
  model:拟合数据的模型
  cv : k-fold
  scoring: 打分参数-‘accuracy'、‘f1'、‘precision'、‘recall' 、‘roc_auc'、'neg_log_loss'等等
"""
 
## 5.2 检验曲线
from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1)
"""参数
---
  model:用于fit和predict的对象
  X, y: 训练集的特征和标签
  param_name:将被改变的参数的名字
  param_range: 参数的改变范围
  cv:k-fold
  
返回值
---
  train_score: 训练集得分(array)
  test_score: 验证集得分(array)
"""
 
 
"""
*****************
六、保存模型
*****************
"""
## 6.1 保存为pickle文件
import pickle
 
# 保存模型
with open('model.pickle', 'wb') as f:
  pickle.dump(model, f)
 
# 读取模型
with open('model.pickle', 'rb') as f:
  model = pickle.load(f)
model.predict(X_test)
 
 
## 6.2 sklearn方法自带joblib
from sklearn.externals import joblib
 
# 保存模型
joblib.dump(model, 'model.pickle')
 
#载入模型
model = joblib.load('model.pickle')

关于scikit-learn怎么在Python中使用就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI