pandas.read_csv(filepath_or_buffer, na_values='NAN', parse_dates=['Last Update'])
从CSV文件中读取数据并创建一个DataFrame对象,na_vlaues用于设置缺失值形式,parse_dates用于将指定的列解析成时间日期格式。dataframe.to_csv("xxx.csv", mode='a', header=False)
导出DataFrame数据到CSV文件。
import pandas as pd
if __name__ == "__main__":
df = pd.read_csv("temp.csv")
print(df)
print(df.info())
df.to_csv("temp2.csv")
# output:
# S.No Name Age City Salary
# 0 1 Tom 28 Toronto 20000
# 1 2 Lee 32 HongKong 3000
# 2 3 Steven 43 Bay Area 8300
# 3 4 Ram 38 Hyderabad 3900
# <class 'pandas.core.frame.DataFrame'>
# RangeIndex: 4 entries, 0 to 3
# Data columns (total 5 columns):
# S.No 4 non-null int64
# Name 4 non-null object
# Age 4 non-null int64
# City 4 non-null object
# Salary 4 non-null int64
# dtypes: int64(3), object(2)
# memory usage: 240.0+ bytes
# None
可以指定CSV文件中的一列来使用index_col定制索引。
import pandas as pd
if __name__ == "__main__":
df = pd.read_csv("temp.csv", index_col=['S.No'])
print(df)
# output:
# Name Age City Salary
# S.No
# 1 Tom 28 Toronto 20000
# 2 Lee 32 HongKong 3000
# 3 Steven 43 Bay Area 8300
# 4 Ram 38 Hyderabad 3900
对于较大的文本文件,如果完整读入内存,则读入过程会很慢,甚至无法读入内存,或者可以读入内存,但没法进行进一步的计算,此时可以使用read_csv提供的chunksize或者iterator参数,部分读入文件,处理完后再通过to_csv的mode='a',将每部分结果逐步写入文件。
在输出文件时,大文件输出csv比输出excel要快,xls只支持60000+条记录,xlsx虽然支持记录变多,但如果内容有中文常常会出现内容丢失。因此,如果数量较小可以选择xls,而数量较大则建议输出到csv。
HDF5(Hierarchical Data Formal)是用于存储大规模数值数据的较为理想的存储格式,文件后缀名为h6,存储读取速度非常快,且可在文件内部按照明确的层次存储数据,同一个HDF5可以看做一个高度整合的文件夹,其内部可存放不同类型的数据。在Python中操作HDF5文件的方式主要有两种,一是利用pandas中内建的一系列HDF5文件操作相关的方法来将pandas中的数据结构保存在HDF5文件中,二是利用h6py模块来完成从Python原生数据结构向HDF5格式的保存。pandas.HDFStore()
pandas.HDFStore()用于生成管理HDF5文件IO操作的对象,其主要参数如下:
path:字符型输入,用于指定h6文件的路径。
mode:用于指定IO操作的模式,默认为'a',即当指定文件已存在时不影响原有数据写入,指定文件不存在时则新建文件;'r',只读模式;'w',创建新文件(会覆盖同名旧文件);'r+',与'a'作用相似,但要求文件必须已经存在;
complevel:int型,用于控制h6文件的压缩水平,取值范围在0-9之间,越大则文件的压缩程度越大,占用的空间越小,但相对应的在读取文件时需要付出更多解压缩的时间成本,默认为0,代表不压缩。
通过使用键值对或put方法可以将不同的数据存入store对象中,store对象的put()方法主要参数如下:
key:指定h6文件中待写入数据的key
value:指定与key对应的待写入的数据
format:字符型输入,用于指定写出的模式,'fixed'对应的模式速度快,但不支持追加也不支持检索;'table'对应的模式以表格的模式写出,速度稍慢,但支持直接通过store对象进行追加和表格查询操作。
import pandas as pd
import numpy as np
if __name__ == "__main__":
store = pd.HDFStore("demo.h6")
s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
df = pd.DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'])
store['s'] = s
store.put(key='df', value=df)
print(store.items)
print(store.keys())
store.close()
# output:
# <bound method HDFStore.items of <class 'pandas.io.pytables.HDFStore'>
# File path: demo.h6
# >
# ['/df', '/s']
删除store对象中指定数据的方法有两种,一是使用remove()方法,传入要删除数据对应的键;二是使用Python中的关键词del来删除指定数据。
import pandas as pd
import numpy as np
if __name__ == "__main__":
store = pd.HDFStore("demo.h6")
s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
df = pd.DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'])
store['s'] = s
store.put(key='df', value=df)
print(store.keys())
store.remove('s')
print(store.keys())
store.close()
# output:
# ['/df', '/s']
# ['/df']
将当前的store对象持久化到本地,只需要利用close()方法关闭store对象即可。
Pandas提供了便利方法可以将Pandas的数据结构直接导出到本地h6文件中或从h6文件中读取。pd.read_hdf('demo.h6', key='df')
从hdf文件中读取键的值df.to_hdf(path_or_buf='demo.h6', key='df')
将df保存到hdf文件
import pandas as pd
import numpy as np
if __name__ == "__main__":
# 创建新的数据框
df_ = pd.DataFrame(np.random.randn(5, 5))
# 导出到已存在的h6文件中
df_.to_hdf(path_or_buf='demo.h6', key='df')
# 创建于本地demo.h6进行IO连接的store对象
store = pd.HDFStore('demo.h6')
# 查看指定h6对象中的所有键
print(store.keys())
store.close()
print(store.is_open)
df = pd.read_hdf('demo.h6', key='df')
print(df)
# output:
# ['/df']
# False
# 0 1 2 3 4
# 0 0.262806 -0.146832 -0.219655 0.553608 -0.278420
# 1 -0.057369 -1.662138 -0.757119 -2.000140 1.659584
# 2 1.030621 0.421785 -0.239423 0.814709 -1.596752
# 3 -1.538354 0.988993 -1.460490 0.846775 1.073998
# 4 0.092367 -0.042897 -0.034253 0.299312 0.970190
HDF5在存储较大规模数据时有显著优势,其存取速度效率和压缩效率都比CSV高很多。
pd.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None)
从Excel文件导入数据
io:为excel文件路径或IO。
sheet_name:返回指定的sheet,如果将sheet_name指定为None,则返回全表。如果需要返回多个表,,可以将sheet_name指定为一个列表。
header:指定数据表的表头,默认值为0,即将第一行作为表头。
index_col:用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。可以设定index_col=False,pandas不适用第一列作为行索引。
usecols:读取指定的列,也可以通过名字或索引值。
import pandas as pd
if __name__ == "__main__":
df = pd.read_excel("test.xls", sheet_name=None)
print(df['Sheet1'])
print(df['Sheet2'])
# output:
# No Name Age Score
# 0 1 Bauer 26 89
# 1 2 Bob 24 87
# 2 3 Jack 25 80
# 3 4 Alex 30 90
# No Name Age
# 0 1 Bauer 26
# 1 2 Bob 24
# 2 3 Jack 25
# 3 4 Alex 30
读取excel主要通过read_excel函数实现,除了pandas还需要安装第三方库xlrd。data.to_excel(io, sheet_name='Sheet1', index=False, header=True)
导出数据到Excel文件
使用to_excel函数需要安装xlwt库。
import pandas as pd
import numpy as np
if __name__ == "__main__":
df = pd.DataFrame(np.random.randn(3, 3), columns=['A', 'B', 'C'])
print(df)
df.to_excel("test1.xls", sheet_name='Sheet3', index=False)
df = pd.read_excel("test1.xls")
print(df)
# output:
# A B C
# 0 1.066504 0.807083 -0.213006
# 1 0.247025 -1.129131 -0.130942
# 2 0.090071 -0.358951 0.266514
# A B C
# 0 1.066504 0.807083 -0.213006
# 1 0.247025 -1.129131 -0.130942
# 2 0.090071 -0.358951 0.266514
pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None)
将SQL查询或数据库表读入DataFrame,是对read_sql_table和 read_sql_query的封装,将根据提供的输入委托给特定的功能。SQL查询将被路由到read_sql_query,而数据库表名将被路由到read_sql_table。pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None)
将SQL数据库表读入DataFrame。
sql:要执行的SQL查询或表名,string或SQLAlchemy对象。
con:SQLAlchemy连接(引擎/连接)或数据库字符串URI或DBAPI2连接,可以使用SQLAlchemy库支持的任何数据库。如果是DBAPI2对象,则仅支持sqlite3。
index_col:字符串或字符串列表,可选,默认值:None,要设置为index的列(MultiIndex)。
coerce_float:boolean,默认为True,尝试将非字符串,非数字对象(如decimal.Decimal)的值转换为浮点,
params:list,tuple或dict,optional,default:None,传递给执行方法的参数列表,用于传递参数的语法取决于数据库驱动程序。
parse_dates:list或dict,默认值:None,要解析为日期的列名的列表。
columns:list,默认值:None,从SQL表中选择的列名列表。
chunksize:int,默认None,如果指定,则返回一个迭代器,其中chunksize是要包含在每个块中的行数。
import MySQLdb
mysql_cn= MySQLdb.connect(host='host',
port=3306,user='username', passwd='password',
db='information_schema')
df_mysql = pd.read_sql('select * from VIEWS;', con=mysql_cn)
print('loaded dataframe from MySQL. records:', len(df_mysql))
mysql_cn.close()
DataFrame.to_sql (name,con,schema = None,if_exists ='fail',index = True,index_label = None,chunksize = None,dtype = None )
导出DataFrame到SQL数据库。
name:SQL表的名称。
con:sqlalchemy.engine.Engine或sqlite3.Connection,可以使用SQLAlchemy库支持的任何数据库,为sqlite3.Connection对象提供了旧版支持。
schema:可选,指定架构(如果数据库支持)。如果为None,请使用默认架构。
if_exists:{'fail','replace','append'},默认'fail',如果表已存在的情况如下,fail:引发ValueError;replace:在插入新值前删除表;append:将新值插入现有表。
index:布尔值,默认为True,将DataFrame index写为列。使用index_label作为表中的列名。
index_label:字符串或序列,默认为None,index列的列标签。如果给出None(默认)且 index为True,则使用index名称。如果DataFrame使用MultiIndex,则应该给出一个sequence。
chunksize:int,可选,将一次批量写入的数量。默认情况下,所有行都将立即写入。
dtype:dict,可选指定列的数据类型。键应该是列名,值应该是SQLAlchemy类型,或sqlite3传统模式的字符串。
pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=True,
convert_axes=True, convert_dates=True, keep_default_dates=True,
numpy=False, precise_float=False, date_unit=None, encoding=None,
lines=False, chunksize=None, compression='infer')
从JSON文件或JSON格式的字符串导入数据
path_or_buf:Json文件路径或JSON格式的字符串
orient:JSON格式字符串的指示,Series可选值为'split','records','index','table',默认为index。DataFrame的可选值为
'split','records','index','columns','values','table',默认为columns。
‘split’ : JSON字符串以字典格式,如{index -> [index], columns -> [columns], data -> [values]}
json文件的每一行都类似如下,而且json文件的key的名字只能为index,cloumns,data三个。
‘records’ : JSON字符串以列表格式,如[{column -> value}, … , {column -> value}]
‘index’ : JSON字符串以字典格式,如 {index -> {column -> value}}
‘columns’ : JSON字符串以字典格式,如 {column -> {index -> value}}
‘values’ : JSON字符串为数组格式。
typ:数据类型,可选值为series,frame,默认为frame。
data.to_json(self, path_or_buf=None, orient=None, date_format=None,
double_precision=10, force_ascii=True, date_unit='ms',
default_handler=None, lines=False, compression='infer',
index=True)
导出DataFrame数据到JSON文件。
import pandas as pd
import numpy as np
if __name__ == "__main__":
df = pd.DataFrame(np.random.randn(3,8), index=['A', 'B', 'C'])
print(df)
df.to_json("test.json")
df = pd.read_json("test.json")
print(df)
# output:
# 0 1 2 ... 5 6 7
# A -0.305526 -0.696618 0.796365 ... -0.195769 -1.669797 0.548616
# B -1.598829 1.104907 -1.969812 ... 1.590904 1.372927 0.766009
# C -1.424199 0.717892 0.728426 ... 0.358646 0.742373 -0.820586
#
# [3 rows x 8 columns]
# 0 1 2 ... 5 6 7
# A -0.305526 -0.696618 0.796365 ... -0.195769 -1.669797 0.548616
# B -1.598829 1.104907 -1.969812 ... 1.590904 1.372927 0.766009
# C -1.424199 0.717892 0.728426 ... 0.358646 0.742373 -0.820586
#
# [3 rows x 8 columns]
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df.head(3))
print(df.tail(3))
# output:
# A B C
# 2013-01-01 0.768917 -0.963290 -0.159038
# 2013-01-02 -0.023267 -0.292786 0.652954
# 2013-01-03 0.176760 0.137241 1.301041
# 2013-01-04 -0.071628 -1.371969 0.774005
# 2013-01-05 -0.793016 -0.178345 0.035532
# 2013-01-06 0.407762 0.241827 1.170372
# A B C
# 2013-01-01 0.768917 -0.963290 -0.159038
# 2013-01-02 -0.023267 -0.292786 0.652954
# 2013-01-03 0.176760 0.137241 1.301041
# A B C
# 2013-01-04 -0.071628 -1.371969 0.774005
# 2013-01-05 -0.793016 -0.178345 0.035532
# 2013-01-06 0.407762 0.241827 1.170372
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df.index)
print(df.columns)
print(list(df))
print(df.values)
# output:
# A B C
# 2013-01-01 0.971426 0.403905 0.304562
# 2013-01-02 -2.404873 -0.222086 0.444464
# 2013-01-03 -0.144014 -0.513883 -0.468732
# 2013-01-04 0.065060 0.460675 -0.633609
# 2013-01-05 -1.322018 2.128932 1.099606
# 2013-01-06 -0.220413 -0.086348 -0.289723
# DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
# '2013-01-05', '2013-01-06'],
# dtype='datetime64[ns]', freq='D')
# Index(['A', 'B', 'C'], dtype='object')
# ['A', 'B', 'C']
# [[ 0.97142634 0.40390521 0.30456152]
# [-2.4048735 -0.22208588 0.44446443]
# [-0.14401362 -0.51388305 -0.46873214]
# [ 0.06505955 0.46067507 -0.63360907]
# [-1.32201785 2.12893236 1.09960613]
# [-0.22041327 -0.08634845 -0.28972288]]
查看DataFrame的行数与列数。
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df.shape)
print(df.shape[0])
print(df.shape[1])
# output:
# A B C
# 2013-01-01 1.571635 0.740456 -0.789674
# 2013-01-02 0.534758 0.372924 1.139897
# 2013-01-03 0.419329 0.097288 -0.061034
# 2013-01-04 0.292189 -0.805046 -0.512478
# 2013-01-05 2.293956 -0.310201 -0.661519
# 2013-01-06 0.890370 0.190517 0.306458
# (6, 3)
# 6
# 3
查看DataFrame的index、数据类型及内存信息。
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df.info())
# output:
# A B C
# 2013-01-01 0.145529 -0.299115 -0.360462
# 2013-01-02 2.203913 -0.619418 2.478992
# 2013-01-03 -1.106605 1.114359 -0.653225
# 2013-01-04 1.409313 2.198673 -1.663985
# 2013-01-05 -0.917697 0.645962 -1.323553
# 2013-01-06 0.729082 0.043500 -1.932772
# <class 'pandas.core.frame.DataFrame'>
# DatetimeIndex: 6 entries, 2013-01-01 to 2013-01-06
# Freq: D
# Data columns (total 3 columns):
# A 6 non-null float64
# B 6 non-null float64
# C 6 non-null float64
# dtypes: float64(3)
# memory usage: 192.0 bytes
# None
统计每一列非空个数,使用df.count()
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df.count())
# output:
# A B C
# 2013-01-01 0.160293 0.298212 0.572019
# 2013-01-02 1.046787 0.559711 -0.259907
# 2013-01-03 0.208801 1.018917 -1.165052
# 2013-01-04 -0.080998 1.268477 -1.038384
# 2013-01-05 -0.413563 0.101436 0.215154
# 2013-01-06 0.266813 0.945366 1.726588
# A 6
# B 6
# C 6
# dtype: int64
统计某列有多少个不同的类用nunique()或者len(set()),统计某列不同类对应的个数用value_counts()。
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df.A.nunique())
print(len(set(df.A)))
# output:
# A B C
# 2013-01-01 0.256037 -0.096629 -0.224575
# 2013-01-02 0.220131 0.460777 -0.191140
# 2013-01-03 0.957422 0.584076 -1.548418
# 2013-01-04 -0.913387 -1.056598 0.201946
# 2013-01-05 -0.076716 0.337379 2.560821
# 2013-01-06 1.244448 1.241131 0.232319
# 6
# 6
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20130101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df.T)
# output:
# A B C
# 2013-01-01 -0.622806 1.461436 -1.133845
# 2013-01-02 1.408834 -1.117877 0.922919
# 2013-01-03 -0.492947 -1.063588 1.702908
# 2013-01-04 -0.401612 -0.206524 0.843514
# 2013-01-05 0.064999 0.106151 0.733977
# 2013-01-06 -2.219718 -0.972984 0.466263
# 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
# A -0.622806 1.408834 -0.492947 -0.401612 0.064999 -2.219718
# B 1.461436 -1.117877 -1.063588 -0.206524 0.106151 -0.972984
# C -1.133845 0.922919 1.702908 0.843514 0.733977 0.466263
df.idxmax(self, axis=0, skipna=True)
df.idxmax(0)
显示所有列最大值所对应的index
df.A.idxmax(0)
显示A列中最大值对应的index
df.idxmax(1)
显示所有行最大值所对应的列名
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1'])
print(df)
print(df.idxmax(0))
print(df.col2.idxmax(0))
print(df.idxmax(1))
print(df.idxmin(0))
print(df.col2.idxmin(0))
print(df.idxmin(1))
# output:
# col3 col2 col1
# rank2 -0.139445 -1.239773 -0.280064
# rank1 0.170190 1.093101 1.697052
# rank4 -0.174857 -0.526127 -1.197490
# rank3 -0.190417 0.241660 1.206216
# col3 rank1
# col2 rank1
# col1 rank1
# dtype: object
# rank1
# rank2 col3
# rank1 col1
# rank4 col3
# rank3 col1
# dtype: object
# col3 rank3
# col2 rank2
# col1 rank4
# dtype: object
# rank2
# rank2 col2
# rank1 col3
# rank4 col1
# rank3 col3
# dtype: object
“格式限定符”(语法是'{}'中带:号),可以print相应格式的数据
import pandas as pd
import numpy as np
if __name__ == "__main__":
# 百分数
print('{:.2%}'.format(0.12354))
# 金额千位分隔符
print('{:,}'.format(123456789))
# 小数精度
print('{:.2f}'.format(31.31412))
# output:
# 12.35%
# 123,456,789
# 31.31
pandas.set_option('display.expand_frame_repr', False)
True表示可以换行显示,False表示不允许换行。pandas.set_option('display.max_rows', 10)
pandas.set_option('display.max_columns', 10)
显示的最大行数和列数,如果超额就显示省略号。pandas.set_option('display.precision', 5)
显示小数点后的位数,浮点数的精度。pandas.set_option('display.large_repr', 'truncate')
truncate表示截断,info表示查看信息,默认选truncate。pandas.set_option('display.max_colwidth', 5)
设定每一列的最大宽度pandas.set_option('display.chop_threshold', 0.5)
绝对值小于0.5的显示0.0pandas.set_option('display.colheader_justify', 'left')
显示居中还是左边pandas.set_option('display.width', 200)
横向最多显示多少个字符, 一般80不适合横向的屏幕,平时多用200。
Pandas支持三种类型的多轴索引,基于标签进行索引、基于整数进行索引、基于标签和整数进行索引。
Pandas提供了各种方法来完成基于标签的索引,可以使用标签如下:
(1)单个标量标签
(2)标签列表
(3)切片对象,标签为切片时包括起始边界
(4)一个布尔数组
loc需要两个标签,用","分隔。第一个表示行,第二个表示列。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1'])
print(df)
print(df.loc['rank1', 'col2'])
print(df.loc[:, 'col3'])
print(df.loc[:, ['col1', 'col3']])
print(df.loc['rank1':'rank3', :])
# output:
# col3 col2 col1
# rank2 1.113696 -1.412935 -0.806799
# rank1 0.107469 1.086778 -0.971733
# rank4 -0.135899 -0.753419 -0.569671
# rank3 1.416578 1.230413 0.795368
# 1.086777931461885
# rank2 1.113696
# rank1 0.107469
# rank4 -0.135899
# rank3 1.416578
# Name: col3, dtype: float64
# col1 col3
# rank2 -0.806799 1.113696
# rank1 -0.971733 0.107469
# rank4 -0.569671 -0.135899
# rank3 0.795368 1.416578
# col3 col2 col1
# rank1 0.107469 1.086778 -0.971733
# rank4 -0.135899 -0.753419 -0.569671
# rank3 1.416578 1.230413 0.795368
标签的优点是可以多轴交叉选择,可以通过行index标签和列标签定位DataFrame数据,但切片包含闭区间。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20190101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df.loc[dates[0]])
print(df.loc[:, ['A', 'B']])
print(df.loc['2019-01-03':'2019-01-05', ['A', 'B']])
print(df.loc['2019-01-03', ['A', 'B']])
print(df.loc['2019-01-03', 'A'])
# output:
# A B C
# 2019-01-01 -0.640586 0.296498 0.758321
# 2019-01-02 -0.219330 0.377097 0.353152
# 2019-01-03 0.857294 1.255778 1.797687
# 2019-01-04 -1.271955 -1.675781 0.484156
# 2019-01-05 1.223988 1.200979 1.074488
# 2019-01-06 -0.722830 -0.525681 0.294155
# A -0.640586
# B 0.296498
# C 0.758321
# Name: 2019-01-01 00:00:00, dtype: float64
# A B
# 2019-01-01 -0.640586 0.296498
# 2019-01-02 -0.219330 0.377097
# 2019-01-03 0.857294 1.255778
# 2019-01-04 -1.271955 -1.675781
# 2019-01-05 1.223988 1.200979
# 2019-01-06 -0.722830 -0.525681
# A B
# 2019-01-03 0.857294 1.255778
# 2019-01-04 -1.271955 -1.675781
# 2019-01-05 1.223988 1.200979
# A 0.857294
# B 1.255778
# Name: 2019-01-03 00:00:00, dtype: float64
# 0.8572941113047045
Pandas提供获取纯整数索引的多种方法,如整数、整数列表、Series值。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1'])
print(df)
print(df.iloc[0:3])
print(df.iloc[[1, 2], 0:2])
# output:
# col3 col2 col1
# rank2 -0.483500 -1.073882 -1.081589
# rank1 -0.753271 -1.434796 -0.946916
# rank4 0.125635 0.570554 -2.454738
# rank3 1.949820 -1.464900 -0.171653
# col3 col2 col1
# rank2 -0.483500 -1.073882 -1.081589
# rank1 -0.753271 -1.434796 -0.946916
# rank4 0.125635 0.570554 -2.454738
# col3 col2
# rank1 -0.753271 -1.434796
# rank4 0.125635 0.570554
通过传递位置索引进行位置选择,位置索引可以使用切片操作。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20190101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df.iloc[3])
# 选取除最后两列外的所有列
print(df.iloc[:, :-2])
print(df.iloc[1:4, 1:3])
print(df.iloc[:, [1, 2]])
# 获取标量
print(df.iloc[1, 2])
# output:
# A B C
# 2019-01-01 -1.348715 -0.184542 -0.290333
# 2019-01-02 0.177905 0.876349 0.371486
# 2019-01-03 1.368759 1.399392 -0.000577
# 2019-01-04 1.855882 0.564528 -0.089876
# 2019-01-05 0.530389 -1.292908 0.681160
# 2019-01-06 -0.286435 -0.461200 0.864096
# A 1.855882
# B 0.564528
# C -0.089876
# Name: 2019-01-04 00:00:00, dtype: float64
# A
# 2019-01-01 -1.348715
# 2019-01-02 0.177905
# 2019-01-03 1.368759
# 2019-01-04 1.855882
# 2019-01-05 0.530389
# 2019-01-06 -0.286435
# B C
# 2019-01-02 0.876349 0.371486
# 2019-01-03 1.399392 -0.000577
# 2019-01-04 0.564528 -0.089876
# B C
# 2019-01-01 -0.184542 -0.290333
# 2019-01-02 0.876349 0.371486
# 2019-01-03 1.399392 -0.000577
# 2019-01-04 0.564528 -0.089876
# 2019-01-05 -1.292908 0.681160
# 2019-01-06 -0.461200 0.864096
# 0.3714863793190553
用于获取整行或者整列的数据。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1'])
print(df)
print(df['col2'])
print(df.col2)
# output:
# col3 col2 col1
# rank2 -0.010866 -1.438301 1.008284
# rank1 -0.633372 0.951618 0.190146
# rank4 -0.158926 -2.016063 0.456099
# rank3 -1.028975 -0.144202 -0.077525
# rank2 -1.438301
# rank1 0.951618
# rank4 -2.016063
# rank3 -0.144202
# Name: col2, dtype: float64
# rank2 -1.438301
# rank1 0.951618
# rank4 -2.016063
# rank3 -0.144202
# Name: col2, dtype: float64
选择多列
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1'])
print(df)
print(df[['col2', 'col3']])
# output:
# col3 col2 col1
# rank2 -0.190013 0.775020 -2.243045
# rank1 0.884000 1.347191 -0.388117
# rank4 -1.401332 0.228368 -1.475148
# rank3 0.369793 0.813368 -0.428450
# col2 col3
# rank2 0.775020 -0.190013
# rank1 1.347191 0.884000
# rank4 0.228368 -1.401332
# rank3 0.813368 0.369793
通过切片获取行数据
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
df = pd.DataFrame(np.random.randn(4, 3), index=['rank2', 'rank1', 'rank4', 'rank3'], columns=['col3', 'col2', 'col1'])
print(df)
print(df[0:3])
print(df['rank1':'rank4'])
# output:
# col3 col2 col1
# rank2 -0.868999 0.852147 0.346300
# rank1 1.975817 0.633193 -0.157873
# rank4 0.271203 -0.681425 0.227320
# rank3 0.173491 -0.225134 -0.750217
# col3 col2 col1
# rank2 -0.868999 0.852147 0.346300
# rank1 1.975817 0.633193 -0.157873
# rank4 0.271203 -0.681425 0.227320
# col3 col2 col1
# rank1 1.975817 0.633193 -0.157873
# rank4 0.271203 -0.681425 0.227320
使用一个单独列的值来选择数据。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20190101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df[df.A > 0])
# output:
# A B C
# 2019-01-01 -0.419116 0.370122 -2.026854
# 2019-01-02 -1.041050 0.356879 1.166706
# 2019-01-03 -0.853631 -0.115552 -0.859882
# 2019-01-04 -0.725505 -0.424321 0.218010
# 2019-01-05 1.087608 1.135607 -0.191611
# 2019-01-06 -0.630319 1.033699 -0.153894
# A B C
# 2019-01-05 1.087608 1.135607 -0.191611
使用值来选择数据,不满足条件的值填充NaN。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20190101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
print(df[df > 0])
# output:
# A B C
# 2019-01-01 -0.562408 0.394501 0.516874
# 2019-01-02 -0.589820 -0.902871 -0.395223
# 2019-01-03 0.009566 -0.817079 1.620771
# 2019-01-04 0.307311 0.392733 0.090025
# 2019-01-05 0.469306 -0.563045 -1.402386
# 2019-01-06 0.554762 -0.023549 1.889080
# A B C
# 2019-01-01 NaN 0.394501 0.516874
# 2019-01-02 NaN NaN NaN
# 2019-01-03 0.009566 NaN 1.620771
# 2019-01-04 0.307311 0.392733 0.090025
# 2019-01-05 0.469306 NaN NaN
# 2019-01-06 0.554762 NaN 1.889080
通过标签设置新的值。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20190101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
df.loc['2019-01-04', 'B'] = 3.1415
print(df)
# output:
# A B C
# 2019-01-01 0.950116 0.147263 1.049792
# 2019-01-02 0.305393 -0.235960 -0.385073
# 2019-01-03 -0.024728 -0.581566 -0.343492
# 2019-01-04 2.384613 0.256359 0.422368
# 2019-01-05 -0.941046 0.259252 0.559688
# 2019-01-06 -0.138191 -1.055116 -1.268404
# A B C
# 2019-01-01 0.950116 0.147263 1.049792
# 2019-01-02 0.305393 -0.235960 -0.385073
# 2019-01-03 -0.024728 -0.581566 -0.343492
# 2019-01-04 2.384613 3.141500 0.422368
# 2019-01-05 -0.941046 0.259252 0.559688
# 2019-01-06 -0.138191 -1.055116 -1.268404
如果赋值的标签不存在,则产生新的列(行),未赋值的位置用NaN填充。
通过位置设置新的值。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20190101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
df.iloc[0, 0] = 3.1415
print(df)
# output:
# A B C
# 2019-01-01 1.141077 0.102785 -1.243796
# 2019-01-02 -0.100035 -0.468026 -1.230186
# 2019-01-03 -1.361605 0.603181 0.009779
# 2019-01-04 0.094592 0.377274 -0.743773
# 2019-01-05 0.756191 0.254951 -0.032884
# 2019-01-06 1.029874 0.377550 -1.061605
# A B C
# 2019-01-01 3.141500 0.102785 -1.243796
# 2019-01-02 -0.100035 -0.468026 -1.230186
# 2019-01-03 -1.361605 0.603181 0.009779
# 2019-01-04 0.094592 0.377274 -0.743773
# 2019-01-05 0.756191 0.254951 -0.032884
# 2019-01-06 1.029874 0.377550 -1.061605
设置整列的值。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20190101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
df.loc[:, 'D']= np.array([3]*len(df))
print(df)
# output:
# A B C
# 2019-01-01 -0.377629 -0.792364 -0.030633
# 2019-01-02 0.034738 -0.121923 0.159174
# 2019-01-03 0.288188 2.671207 -0.670135
# 2019-01-04 0.626814 0.669742 0.017105
# 2019-01-05 -0.127686 -0.643768 0.000738
# 2019-01-06 0.524352 -0.228057 -0.896196
# A B C D
# 2019-01-01 -0.377629 -0.792364 -0.030633 3
# 2019-01-02 0.034738 -0.121923 0.159174 3
# 2019-01-03 0.288188 2.671207 -0.670135 3
# 2019-01-04 0.626814 0.669742 0.017105 3
# 2019-01-05 -0.127686 -0.643768 0.000738 3
# 2019-01-06 0.524352 -0.228057 -0.896196 3
通过布尔索引赋值。
# -*- coding=utf-8 -*-
import pandas as pd
import numpy as np
if __name__ == "__main__":
dates = pd.date_range('20190101', periods=6)
df = pd.DataFrame(np.random.randn(6, 3), index=dates, columns=list('ABC'))
print(df)
df2 = df.copy()
# 将正数转化为负数
df2[df2 > 0] = -df2
print(df2)
# output:
# A B C
# 2019-01-01 0.691983 0.489286 -1.632002
# 2019-01-02 1.212439 0.854812 -0.292094
# 2019-01-03 -0.365872 0.738098 -0.494800
# 2019-01-04 0.548706 0.066543 0.242601
# 2019-01-05 0.656829 0.155872 0.262424
# 2019-01-06 -0.085094 1.392970 -0.214890
# A B C
# 2019-01-01 -0.691983 -0.489286 -1.632002
# 2019-01-02 -1.212439 -0.854812 -0.292094
# 2019-01-03 -0.365872 -0.738098 -0.494800
# 2019-01-04 -0.548706 -0.066543 -0.242601
# 2019-01-05 -0.656829 -0.155872 -0.262424
# 2019-01-06 -0.085094 -1.392970 -0.214890
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。