温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python中的DataFrame模块学习

发布时间:2020-08-07 13:33:44 来源:网络 阅读:1028 作者:nineteens 栏目:编程语言

  本文是基于Windows系统环境,学习和测试DataFrame模块:

  Windows 10

  PyCharm 2018.3.5 for Windows (exe)

  python 3.6.8 Windows x86 executable installer

  1. 初始化DataFrame

  创建一个空的DataFrame变量

  import pandas as pd

  import numpy as np

  data = pd.DataFrame()

  print(np.shape(data)) # (0,0)

  通过字典创建一个DataFrame

  import pandas as pd

  import numpy as np

  dict_a = {'name': ['xu', 'wang'], 'gender': ['male', 'female']}

  data = pd.DataFrame(dict_a)

  print(np.shape(data)) # (2,2)

  print(data)

  # data =

  # name gender

  # 0 xu male

  # 1 wang female

  通过numpy.array创建一个DataFrame

  import pandas as pd

  import numpy as np

  mat = np.random.randn(3,4)

  df = pd.DataFrame(mat)

  df.columns = ['a','b','c','d']

  print(df)

  一个DataFrame转成numpy.array

  import pandas as pd

  import numpy as np

  mat = np.random.randn(3,4)

  df = pd.DataFrame(mat)

  df.columns = ['a','b','c','d']

  print(df)

  n = np.array(df)

  print(n)

  DataFrame增加一列数据

  import pandas as pd

  import numpy as np

  data = pd.DataFrame()

  data['ID'] = range(0,10)

  print(np.shape(data)) # (10,1)

  DataFrame增加一列数据,且值相同

  import pandas as pd

  import numpy as np

  dict_a = {'name': ['xu', 'wang'], 'gender': ['male', 'female']}

  data = pd.DataFrame(dict_a)

  data['country'] = 'China'

  print(data)

  # data =

  # name gender country

  # 0 xu male China

  # 1 wang female China

  DataFrame删除重复的数据行

  import pandas as pd

  norepeat_df = df.drop_duplicates(subset=['A_ID', 'B_ID'], keep='first')

  # norepeat_df = df.drop_duplicates(subset=[1, 2], keep='first')

  # keep=False时,就是去掉所有的重复行

  # keep=‘first'时,就是保留第一次出现的重复行

  # keep='last'时就是保留最后一次出现的重复行。

  2. 基本操作

  去除某一列两端的指定字符

  import pandas as pd

  dict_a = {'name': ['.xu', 'wang'], 'gender': ['male', 'female.']}

  data = pd.DataFrame(dict_a)

  print(data)

  # data =

  # name gender

  # 0 .xu male

  # 1 wang female.

  data['name'] = data['name'].str.strip('.') # 删除'.'

  # data['name'] = data['name'].str.strip() # 删除空格

  print(data)

  # data =

  # name gender

  # 0 xu male

  # 1 wang female.

  重新调整index的值

  import pandas as pd

  data = pd.DataFrame()

  data['ID'] = range(0,3)

  # data =

  # ID

  # 0 0

  # 1 1

  # 2 2

  data.index = range(1,len(data) + 1)

  # data =

  # ID

  # 1 0

  # 2 1

  # 3 2

  调整DataFrame列顺序

  import pandas as pd

  data = pd.DataFrame()

  print(data)

  # data =

  # ID name

  # 0 0 xu

  # 1 1 wang

  # 2 2 li

  data = data[['name','ID']]

  # data =

  # name ID

  # 0 xu 0

  # 1 wang 1

  # 2 li 2无锡人流医院 http://www.bhnfkyy.com/

  获取DataFrame的列名

  import pandas as pd

  data = pd.DataFrame()

  print(data)

  # data =

  # ID name

  # 0 0 xu

  # 1 1 wang

  # 2 2 li

  print(data.columns.values.tolist())

  # ['ID', 'name']

  获取DataFrame的行名

  import pandas as pd

  data = pd.DataFrame()

  print(data)

  # data =

  # ID name

  # 0 0 xu

  # 1 1 wang

  # 2 2 li

  print(data._stat_axis.values.tolist())

  # [0, 1, 2]

  3. 读写操作

  将csv文件读入DataFrame数据

  read_csv()函数的参数配置参考官网pandas.read_csv

  import pandas as pd

  data = pd.read_csv('user.csv')

  print (data)

  将DataFrame数据写入csv文件

  to_csv()函数的参数配置参考官网pandas.DataFrame.to_csv

  import pandas as pd

  data = pd.read_csv('test1.csv')

  data.to_csv("test2.csv",index=False, header=True)

  4. 异常处理

  过滤所有包含NaN的行

  dropna()函数的参数配置参考官网pandas.DataFrame.dropna

  from numpy import nan as NaN

  import pandas as pd

  data = pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])

  print (data)

  # data =

  # 1 2 3

  # NaN NaN 2

  # NaN NaN NaN

  # 8 8 NaN

  data = data.dropna()

  # DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

  # axis: 0 or 'index'表示去除行 1 or 'columns'表示去除列

  # how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除

  # thresh: 整数n,表示每行或列中至少有n个元素补位NaN,否则去除

  # subset: ['name', 'gender'] 在子集中去除NaN值,子集也可以index,但是要配合axis=1

  # inplace: 如何为True,则执行操作,然后返回None

  print(data)

  # data =

  # 1 2 3


向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI