小编给大家分享一下MySQL大表count()的优化实现示例,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
今天实验了一下MySQL的count()操作优化, 以下讨论基于mysql5.7 InnoDB存储引擎. x86 windows操作系统。
创建的表的结构如下(数据量为100万):
首先是关于mysql的count(*),count(PK), count(1)哪个快的问题。
实现结果如下:
并没有什么区别!加上了WHERE子句之后3个查询的时间也是相同的,我就不贴图片了。
之前在公司的时候就写过一个select count(*) from table
的SQL语句,在数据多的时候非常慢。所以要怎么优化呢?
这要从InnoDB的索引说起, InnoDB的索引是B+Tree。
对主键索引来说:它只有在叶子节点上存储数据,它的key是主键,并且value为整条数据。
对辅助索引来说:key为建索引的列,value为主键。
这给我们两个信息:
1. 根据主键会查到整条数据
2. 根据辅助索引只能查到主键,然后必须通过主键再查到剩余信息。
所以如果要优化count(*)操作的话,我们需要找一个短小的列,为它建立辅助索引。
在我的例子中就是status
,虽然它的”severelity”几乎为0.
先建立索引:ALTER TABLE test1 ADD INDEX (
status);
然后查询,如下图:
可以看到,查询时间从3.35s下降到了0.26s,查询速度提升近13倍。
如果索引是str
这一列,结果又会是怎么样呢?
先建立索引: alter table test1 add index (str)
结果如下:
可以看到,时间为0.422s,也很快,但是比起status
这列还是有着1.5倍左右的差距。
再大胆一点做个实验,我把status
这列的索引删掉,建立一个status
和left(omdb,200)
(这一列平均1000个字符)的联合索引,然后看查询时间。
建立索引: alter table test1 add index (
status,omdb(200))
结果如下:
时间为1.172s
alter table test1 add index (status,imdbid);
补充!!
要注意索引失效的情况!
建立了索引后正常的的样子:
可以看到key_len为6, Extra的说明是using index.
而如果索引失效的话:
索引失效有很多种情况,比如使用函数,!=操作等,具体请参考官方文档。
对MySQL没有很深的研究,以上是基于我结合B+树的数据结构和对实验结果的推测作出的判断,如有错误,恳请指正!
以上是“MySQL大表count()的优化实现示例”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。