温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python如何基于OpenCV模板匹配识别图片中的数字

发布时间:2021-04-01 09:58:12 来源:亿速云 阅读:413 作者:小新 栏目:开发技术

小编给大家分享一下python如何基于OpenCV模板匹配识别图片中的数字,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

程序目标

单个数字模板:(这些单个模板是我自己直接从图片上截取下来的)

python如何基于OpenCV模板匹配识别图片中的数字

要处理的图片:

python如何基于OpenCV模板匹配识别图片中的数字

终端输出:

python如何基于OpenCV模板匹配识别图片中的数字

文本输出:

python如何基于OpenCV模板匹配识别图片中的数字

思路讲解

python如何基于OpenCV模板匹配识别图片中的数字

代码讲解

首先定义两个会用到的函数

第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了

def cv_show(name, img):
 cv2.imshow(name, img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

第二个是图片缩放的函数

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
 dim = None
 (h, w) = image.shape[:2]
 if width is None and height is None:
  return image
 if width is None:
  r = height / float(h)
  dim = (int(w * r), height)
 else:
  r = width / float(w)
  dim = (width, int(h * r))
 resized = cv2.resize(image, dim, interpolation=inter)
 return resized

先把这个代码贴出来,方便后面单个函数代码的理解。

if __name__ == "__main__":
 # 存放数字模板列表
 digits = []
 # 当前运行目录
 now_dir = os.getcwd()
 print("当前运行目录:" + now_dir)
 numbers_address = now_dir + "\\numbers"
 load_digits()
 times = input("请输入程序运行次数:")
 for i in range(1, int(times) + 1):
  demo(i)
 print("输出成功,请检查本地temp.txt文件")
 while True:
  if input("输入小写‘q'并回车退出") == 'q':
   break

接下来是第一个主要函数,功能是加载数字模板并进行处理。

这个函数使用到了os模块,所以需要在开头import os

def load_digits():
 # 加载数字模板
 path = numbers_address # 这个地方就是获取当前运行目录 获取函数在主函数里面
 filename = os.listdir(path) # 获取文件夹文件
 for file in filename:
  img = cv2.imread(numbers_address + "\\" + file) # 读取图片
  img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 灰度处理
  # 自动阈值二值化 把图片处理成黑底白字
  img_temp = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  # 寻找数字轮廓
  cnt = cv2.findContours(img_temp, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
  # 获取数字矩形轮廓
  x, y, w, h = cv2.boundingRect(cnt[0])
  # 将单个数字区域进行缩放并存到列表中以备后面使用
  digit_roi = cv2.resize(img_temp[y:y+h, x:x+w], (57, 88))
  digits.append(digit_roi)

最后一个函数是程序的重点,实现功能就是识别出数字并输出。

不过这里把这个大函数分开两部分来讲解。

第一部分是对图片进行处理,最终把图片中的数字区域圈出来。

 # 这两个都是核,参数可以改变
 rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))
 sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
 # 这个就是读取图片的,可以暂时不理解
 target_path = now_dir + "\\" + "demo_" + str(index) + ".png"
 img_origin = cv2.imread(target_path)
 # 对图片进行缩放处理
 img_origin = resize(img_origin, width=300)
 # 灰度图
 img_gray = cv2.cvtColor(img_origin, cv2.COLOR_BGR2GRAY)
 # 高斯滤波 参数可以改变,选择效果最好的就可以
 gaussian = cv2.GaussianBlur(img_gray, (5, 5), 1)、
 # 自动二值化处理,黑底白字
 img_temp = cv2.threshold(
  gaussian, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
 # 顶帽操作
 img_top = cv2.morphologyEx(img_temp, cv2.MORPH_TOPHAT, rectKernel)
 # sobel操作
 img_sobel_x = cv2.Sobel(img_top, cv2.CV_64F, 1, 0, ksize=7)
 img_sobel_x = cv2.convertScaleAbs(img_sobel_x)
 img_sobel_y = cv2.Sobel(img_top, cv2.CV_64F, 0, 1, ksize=7)
 img_sobel_y = cv2.convertScaleAbs(img_sobel_y)
 img_sobel_xy = cv2.addWeighted(img_sobel_x, 1, img_sobel_y, 1, 0)
 # 闭操作
 img_closed = cv2.morphologyEx(img_sobel_xy, cv2.MORPH_CLOSE, rectKernel)
 # 自动二值化
 thresh = cv2.threshold(
  img_closed, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
 # 闭操作
 img_closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
 # 寻找数字轮廓
 cnts = cv2.findContours(
  img_closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
 # 轮廓排序
 (cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")
 # 存放正确数字序列(包含逗号)的轮廓,即过滤掉不需要的轮廓
 right_loc = []
 # 下面这个循环是对轮廓进行筛选,只有长宽比例大于2的才可以被添加到列表中
 # 这个比例可以根据具体情况来改变。除此之外,还可以通过轮廓周长和轮廓面积等对轮廓进行筛选
 for c in cnts:
  x, y, w, h = cv2.boundingRect(c)
  ar = w/float(h)
  if ar > 2:
   right_loc.append((x, y, w, h))

部分步骤的效果图:

python如何基于OpenCV模板匹配识别图片中的数字

可以看到在进行完最后一次闭操作后,一串数字全部变成白色区域,这样再进行轮廓检测就可以框出每一行数字的大致范围,这样就可以缩小数字处理的范围,可以在这些具体的区域内部对单个数字进行处理。

轮廓效果:

python如何基于OpenCV模板匹配识别图片中的数字

在这样进行以上步骤之后,就可以确定一行数字的范围了,下面就进行轮廓筛选把符合条件的轮廓存入列表。

注意:在代码中使用了(cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")

这个函数的使用需要导入imutils,这个模块具体使用方法可以浏览我的另一篇博客OpenCV学习笔记

函数的最后一部分就是对每个数字轮廓进行分割,取出单个数字的区域然后进行模板匹配。

for (gx, gy, gw, gh) in right_loc:
  # 用于存放识别到的数字
  digit_out = []
  # 下面两个判断主要是防止出现越界的情况发生,如果发生的话图片读取会出错
  if (gy-10 < 0):
   now_gy = gy
  else:
   now_gy = gy-10
  if (gx - 10 < 0):
   now_gx = gx
  else:
   now_gx = gx-10
  # 选择图片兴趣区域
  img_digit = gaussian[now_gy:gy+gh+10, now_gx:gx+gw+10]
  # 二值化处理
  img_thresh = cv2.threshold(
   img_digit, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  # 寻找所有轮廓 找出每个数字的轮廓(包含逗号) 正确的话应该有9个轮廓
  digitCnts = cv2.findContours(
   img_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
  # 从左到右排列轮廓
  # 这样排列的好处是,正常情况下可以确定逗号的位置方便后面删除逗号
  (cnts, boundingBoxes) = contours.sort_contours(digitCnts, "left-to-right")
  # cnts是元组,需要先转换成列表,因为后面会对元素进行删除处理
  cnts = list(cnts)
  flag = 0
  # 判断轮廓数量是否有9个
  if len(cnts) == 9:
   # 删除逗号位置
   del cnts[1]
   del cnts[2]
   del cnts[3]
   del cnts[4]
   # 可以在转成元组
   cnts = tuple(cnts)
   # 存放单个数字的矩形区域
   num_roi = []
   for c in cnts:
    x, y, w, h = cv2.boundingRect(c)
    num_roi.append((x, y, w, h))
   # 对数字区域进行处理,把尺寸缩放到与数字模板相同
   # 对其进行简单处理,方便与模板匹配,增加匹配率
   for (rx, ry, rw, rh) in num_roi:
    roi = img_digit[ry:ry+rh, rx:rx+rw]
    roi = cv2.resize(roi, (57, 88))
    # 高斯滤波
    roi = cv2.GaussianBlur(roi, (5, 5), 1)
    # 二值化
    roi = cv2.threshold(
     roi, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    # 用于存放匹配率
    source = []
    # 遍历数字模板
    for digitROI in digits:
     # 进行模板匹配
     res = cv2.matchTemplate(
      roi, digitROI, cv2.TM_CCOEFF_NORMED)
     max_val = cv2.minMaxLoc(res)[1]
     source.append(max_val)
    # 这个需要仔细理解 这个就是把0-9数字中匹配度最高的数字存放到列表中
    digit_out.append(str(source.index(max(source))))
   # 打印最终输出值
   print(digit_out)
  else:
   print("读取失败")
   flag = 1
  # 将数字输出到txt文本中
  t = ''
  with open(now_dir + "\\temp.txt", 'a+') as q:
   if flag == 0:
    for content in digit_out:
     t = t + str(content) + " "
    q.write(t.strip(" "))
    q.write('\n')
    t = ''
   else:
    q.write("读取失败")
    q.write('\n')

注意理解:digit_out.append(str(source.index(max(source))))

这个是很重要的,列表source存放模板匹配的每个数字的匹配率,求出其中最大值的索引值,因为数字模板是按照0-9排列的,索引source的匹配率也是按照0-9排列的,所以每个元素的索引值就与相匹配的数字相同。这样的话,取得最大值的索引值就相当于取到了匹配率最高的数字。

完整代码

from imutils import contours
import cv2
import os


def cv_show(name, img):
 cv2.imshow(name, img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()


def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
 dim = None
 (h, w) = image.shape[:2]
 if width is None and height is None:
  return image
 if width is None:
  r = height / float(h)
  dim = (int(w * r), height)
 else:
  r = width / float(w)
  dim = (width, int(h * r))
 resized = cv2.resize(image, dim, interpolation=inter)
 return resized


def load_digits():
 # 加载数字模板
 path = numbers_address
 filename = os.listdir(path)
 for file in filename:
  # print(file)
  img = cv2.imread(
   numbers_address + "\\" + file)
  img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  img_temp = cv2.threshold(
   img_gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  cnt = cv2.findContours(img_temp, cv2.RETR_EXTERNAL,
        cv2.CHAIN_APPROX_NONE)[0]
  x, y, w, h = cv2.boundingRect(cnt[0])
  digit_roi = cv2.resize(img_temp[y:y+h, x:x+w], (57, 88))
  # 将数字模板存到列表中
  digits.append(digit_roi)


def demo(index):
 rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))
 sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
 target_path = now_dir + "\\" + "demo_" + str(index) + ".png"
 img_origin = cv2.imread(target_path)
 img_origin = resize(img_origin, width=300)
 img_gray = cv2.cvtColor(img_origin, cv2.COLOR_BGR2GRAY)
 gaussian = cv2.GaussianBlur(img_gray, (5, 5), 1)
 img_temp = cv2.threshold(
  gaussian, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
 img_top = cv2.morphologyEx(img_temp, cv2.MORPH_TOPHAT, rectKernel)
 img_sobel_x = cv2.Sobel(img_top, cv2.CV_64F, 1, 0, ksize=7)
 img_sobel_x = cv2.convertScaleAbs(img_sobel_x)
 img_sobel_y = cv2.Sobel(img_top, cv2.CV_64F, 0, 1, ksize=7)
 img_sobel_y = cv2.convertScaleAbs(img_sobel_y)
 img_sobel_xy = cv2.addWeighted(img_sobel_x, 1, img_sobel_y, 1, 0)
 img_closed = cv2.morphologyEx(img_sobel_xy, cv2.MORPH_CLOSE, rectKernel)
 thresh = cv2.threshold(
  img_closed, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
 img_closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
 cnts = cv2.findContours(
  img_closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
 (cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")
 draw_img = img_origin.copy()
 draw_img = cv2.drawContours(draw_img, cnts, -1, (0, 0, 255), 1)
 cv_show("666", draw_img)

 # 存放正确数字序列(包含逗号)的轮廓,即过滤掉不需要的轮廓
 right_loc = []
 for c in cnts:
  x, y, w, h = cv2.boundingRect(c)
  ar = w/float(h)
  if ar > 2:
   right_loc.append((x, y, w, h))
 for (gx, gy, gw, gh) in right_loc:
  # 用于存放识别到的数字
  digit_out = []
  if (gy-10 < 0):
   now_gy = gy
  else:
   now_gy = gy-10
  if (gx - 10 < 0):
   now_gx = gx
  else:
   now_gx = gx-10
  img_digit = gaussian[now_gy:gy+gh+10, now_gx:gx+gw+10]
  # 二值化处理
  img_thresh = cv2.threshold(
   img_digit, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  # 寻找轮廓 找出每个数字的轮廓(包含逗号) 正确的话应该有9个轮廓
  digitCnts = cv2.findContours(
   img_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
  # 从左到右排列
  (cnts, boundingBoxes) = contours.sort_contours(digitCnts, "left-to-right")
  cnts = list(cnts)
  flag = 0
  if len(cnts) == 9:
   del cnts[1]
   del cnts[2]
   del cnts[3]
   del cnts[4]
   cnts = tuple(cnts)
   num_roi = []
   for c in cnts:
    x, y, w, h = cv2.boundingRect(c)
    num_roi.append((x, y, w, h))
   for (rx, ry, rw, rh) in num_roi:
    roi = img_digit[ry:ry+rh, rx:rx+rw]
    roi = cv2.resize(roi, (57, 88))
    roi = cv2.GaussianBlur(roi, (5, 5), 1)
    roi = cv2.threshold(
     roi, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    source = []
    for digitROI in digits:
     res = cv2.matchTemplate(
      roi, digitROI, cv2.TM_CCOEFF_NORMED)
     max_val = cv2.minMaxLoc(res)[1]
     source.append(max_val)
    digit_out.append(str(source.index(max(source))))
   cv2.rectangle(img_origin, (gx-5, gy-5),
       (gx+gw+5, gy+gh+5), (0, 0, 255), 1)
   print(digit_out)
  else:
   print("读取失败")
   flag = 1
  t = ''
  with open(now_dir + "\\temp.txt", 'a+') as q:
   if flag == 0:
    for content in digit_out:
     t = t + str(content) + " "
    q.write(t.strip(" "))
    q.write('\n')
    t = ''
   else:
    q.write("读取失败")
    q.write('\n')


if __name__ == "__main__":
 # 存放数字模板列表
 digits = []
 # 当前运行目录
 now_dir = os.getcwd()
 print("当前运行目录:" + now_dir)
 numbers_address = now_dir + "\\numbers"
 load_digits()
 times = input("请输入程序运行次数:")
 for i in range(1, int(times) + 1):
  demo(i)
 print("输出成功,请检查本地temp.txt文件")
 cv2.waitKey(0)
 cv2.destroyAllWindows()
 while True:
  if input("输入小写‘q'并回车退出") == 'q':
   break

整个文件下载地址:https://wwe.lanzous.com/iLSDunf850b

注意:如果想同时识别多个图片话,需要将图片统一改名为“demo_ + 数字序号.png” 例如:demo_1.png demo_2.png 同时在运行代码时输入图片个数即可。

以上是“python如何基于OpenCV模板匹配识别图片中的数字”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI