小编给大家分享一下redis中限流的应用示例,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
首先让我们先看一看系统架构设计中,为什么要做“限流”。
旅游景点通常都会有最大的接待量,不可能无限制的放游客进入,比如故宫每天只卖八万张票,超过八万的游客,无法买票进入,因为如果超过八万人,景点的工作人员可能就忙不过来,过于拥挤的景点也会影响游客的体验和心情,并且还会有安全隐患;「只卖N张票,这就是一种限流的手段
」。
软件架构中的服务限流也是类似,也是当系统资源不够的时候,已经不足以应对大量的请求,为了保证服务还能够正常运行,那么按照规则,「系统会把多余的请求直接拒绝掉,以达到限流的效果
」;
不知道大家注意过没有,比如双11,刚过12点有些顾客的网页或APP会显示下单失败的提示,有些就是被限流掉了。
计数法
顾名思义就是来一个,记录一个,比如我1分钟只能处理1000个请求,那么我们就可以设置一个计数器,来一个请求就incr+1,当1分钟之内的数量大于等于1000之后不处理了即可,伪代码如下
$redis = new Redis(); $redis->connect('127.0.0.1', 6379); $rate_limit = 1000; //限制个数 $rate_seconds = 60; //限制时间 $redis_key = "redis_limit"; $count = $redis->get($redis_key); if ($count >= $rate_limit){ //判断60秒内请求个数是否已经达到上限 //直接返回,不处理请求 return } $redis->incr($redis_key, 1);//请求计数 $redis->expire($redis, $rate_seconds); //设置过期时间 60s //to do 业务逻辑处理.......
这种计数方式比较简单快捷,但是有很大的缺点,因为请求的访问不一定是很平稳的,如果0:59过来了1000个请求,1:01已经是下一个窗口,又过来了1000个请求,但实际上三秒内来了2000个请求,已经超过我们的限流上限了。所以这种方法是不推荐的。
还拿上面的例子,一分钟分6份,每份10秒;每过10秒钟,我们的时间窗口就会往右滑动一格,每个格子都有独立的计数器,我们每次都计算时间窗口内的数量,可以解决计数器法中的问题,而且当滑动窗口的格子越多,那么限流的统计就会越精确。具体可以参考下图,看图比较清晰
伪代码实现如下
function api_limit($scene, $period, $maxCount){ $redis = new Redis(); $redis->connect('127.0.0.1', 6379); $key = sprintf('hist:%s', $scene); //限流场景唯一标识 $now = msectime(); // 毫秒时间戳,这样更精确 $pipe=$redis->multi(Redis::PIPELINE); //使用管道提升性能 $pipe->zadd($key, $now, $now); //value 和 score 都使用毫秒时间戳 $pipe->zremrangebyscore($key, 0, $now - $period); //移除时间窗口之前的行为记录,剩下的都是时间窗口内的 $pipe->zcard($key); //获取窗口内的行为数量 $pipe->expire($key, $period/1000 + 1); //多加一秒过期时间 $replies = $pipe->exec(); return $replies[2] <= $maxCount; //$replies[2]为zcard返回的个数 如果zcard结果大于maxCount,则不处理结果 } for ($i=0; $i<20; $i++){ //测试限流是否实现代码 var_dump(isActionAllowed("uniq_scene", 60*1000, 5)); //执行可以发现只有前5次是通过的 } //返回当前的毫秒时间戳 function msectime() { list($msec, $sec) = explode(' ', microtime()); $msectime = (float)sprintf('%.0f', (floatval($msec) + floatval($sec)) * 1000); return $msectime; }
这段代码还是略显复杂,需要读者花一定的时间好好啃。它的整体思路就是:每一个行为到来时,都维护一次时间窗口。将时间窗口外的记录全部清理掉,只保留窗口内的记录。
因为这几个连续的 Redis 操作都是针对同一个 key 的,使用 pipeline 可以显著提升Redis 存取效率。「但这种方案也有缺点,因为它要记录时间窗口内所有的行为记录,如果这个量很大,比如限定 60s 内操作不得超过 100w 次这样的参数,它是不适合做这样的限流的,因为会消耗大量的存储空间
」。
后面还有漏桶算法和令牌桶算法,由于各自的实现比较复杂,所以准备各自新开一篇文章单独描述
以上是“redis中限流的应用示例”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。