温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

使用pytorch怎么计算 kl散度

发布时间:2021-05-24 15:36:46 来源:亿速云 阅读:987 作者:Leah 栏目:开发技术

使用pytorch怎么计算 kl散度 ?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

如果现在想用Y指导X,第一个参数要传X,第二个要传Y。就是被指导的放在前面,然后求相应的概率和对数概率就可以了。

import torch
import torch.nn.functional as F
# 定义两个矩阵
x = torch.randn((4, 5))
y = torch.randn((4, 5))
# 因为要用y指导x,所以求x的对数概率,y的概率
logp_x = F.log_softmax(x, dim=-1)
p_y = F.softmax(y, dim=-1)
 
 
kl_sum = F.kl_div(logp_x, p_y, reduction='sum')
kl_mean = F.kl_div(logp_x, p_y, reduction='mean')
 
print(kl_sum, kl_mean)
 
 
>>> tensor(3.4165) tensor(0.1708)

补充:pytorch中的kl散度,为什么kl散度是负数?

F.kl_div()或者nn.KLDivLoss()是pytroch中计算kl散度的函数,它的用法有很多需要注意的细节。

输入

第一个参数传入的是一个对数概率矩阵,第二个参数传入的是概率矩阵。并且因为kl散度具有不对称性,存在一个指导和被指导的关系,因此这连个矩阵输入的顺序需要确定一下。如果现在想用Y指导X,第一个参数要传X,第二个要传Y。就是被指导的放在前面,然后求相应的概率和对数概率就可以了。

所以,一随机初始化一个tensor为例,对于第一个输入,我们需要先对这个tensor进行softmax(确保各维度和为1),然后再取log;对于第二个输入,我们需要对这个tensor进行softmax。

import torch
import torch.nn.functional as F

a = torch.tensor([[0,0,1.1,2,0,10,0],[0,0,1,2,0,10,0]])
log_a =F.log_softmax(a)

b = torch.tensor([[0,0,1.1,2,0,7,0],[0,0,1,2,0,10,0]])
softmax_b =F.softmax(b,dim=-1)

kl_mean = F.kl_div(log_a, softmax_b, reduction='mean')
print(kl_mean)

为什么KL散度计算出来为负数

先确保对第一个输入进行了softmax+log操作,对第二个参数进行了softmax操作。不进行softmax操作就可能为负。

然后查看自己的输入是否是小数点后有很多位,当小数点后很多位的时候,pytorch下的softmax会产生各维度和不为1的现象,导致kl散度为负,如下所示:

a = torch.tensor([[0.,0,0.000001,0.0000002,0,0.0000007,0]])
log_a =F.log_softmax(a,dim=-1)
print("log_a:",log_a)

b = torch.tensor([[0.,0,0.000001,0.0000002,0,0.0000007,0]])
softmax_b =F.softmax(b,dim=-1)
print("softmax_b:",softmax_b)

kl_mean = F.kl_div(log_a, softmax_b,reduction='mean')
print("kl_mean:",kl_mean)

输出如下,我们可以看到softmax_b的各维度和不为1:

使用pytorch怎么计算 kl散度

pytorch的优点

1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI