这篇文章主要介绍“性能调优必备利器JMH优点有哪些”,在日常操作中,相信很多人在性能调优必备利器JMH优点有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”性能调优必备利器JMH优点有哪些”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
JMH 简介
JMH(Java Microbenchmark Harness)是用于代码微基准测试的工具套件,主要是基于方法层面的基准测试,精度可以达到纳秒级。该工具是由 Oracle 内部实现 JIT 的大牛们编写的,他们应该比任何人都了解 JIT 以及 JVM 对于基准测试的影响。
当你定位到热点方法,希望进一步优化方法性能的时候,就可以使用 JMH 对优化的结果进行量化的分析。
JMH 比较典型的应用场景如下:
想准确地知道某个方法需要执行多长时间,以及执行时间和输入之间的相关性
对比接口不同实现在给定条件下的吞吐量
查看多少百分比的请求在多长时间内完成
下面我们以字符串拼接的两种方法为例子使用 JMH 做基准测试。
加入依赖
因为 JMH 是 JDK9 自带的,如果是 JDK9 之前的版本需要加入如下依赖(目前 JMH 的最新版本为 1.23):
<dependency> <groupId>org.openjdk.jmh</groupId> <artifactId>jmh-core</artifactId> <version>1.23</version> </dependency> <dependency> <groupId>org.openjdk.jmh</groupId> <artifactId>jmh-generator-annprocess</artifactId> <version>1.23</version> </dependency>
编写基准测试
接下来,创建一个 JMH 测试类,用来判断 + 和 StringBuilder.append() 两种字符串拼接哪个耗时更短,具体代码如下所示:
@BenchmarkMode(Mode.AverageTime) @Warmup(iterations = 3, time = 1) @Measurement(iterations = 5, time = 5) @Threads(4) @Fork(1) @State(value = Scope.Benchmark) @OutputTimeUnit(TimeUnit.NANOSECONDS) public class StringConnectTest { @Param(value = {"10", "50", "100"}) private int length; @Benchmark public void testStringAdd(Blackhole blackhole) { String a = ""; for (int i = 0; i < length; i++) { a += i; } blackhole.consume(a); } @Benchmark public void testStringBuilderAdd(Blackhole blackhole) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < length; i++) { sb.append(i); } blackhole.consume(sb.toString()); } public static void main(String[] args) throws RunnerException { Options opt = new OptionsBuilder() .include(StringConnectTest.class.getSimpleName()) .result("result.json") .resultFormat(ResultFormatType.JSON).build(); new Runner(opt).run(); } }
其中需要测试的方法用 @Benchmark 注解标识,这些注解的具体含义将在下面介绍。
在 main() 函数中,首先对测试用例进行配置,使用 Builder 模式配置测试,将配置参数存入 Options 对象,并使用 Options 对象构造 Runner 启动测试。
另外大家可以看下官方提供的 jmh 示例 demo:s/src/main/java/org/openjdk/jmh/samples/" _fcksavedurl="http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/">http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/
执行基准测试
准备工作做好了,接下来,运行代码,等待片刻,测试结果就出来了,下面对结果做下简单说明:
# JMH version: 1.23 # VM version: JDK 1.8.0_201, Java HotSpot(TM) 64-Bit Server VM, 25.201-b09 # VM invoker: D:\Software\Java\jdk1.8.0_201\jre\bin\java.exe # VM options: -javaagent:D:\Software\JetBrains\IntelliJ IDEA 2019.1.3\lib\idea_rt.jar=61018:D:\Software\JetBrains\IntelliJ IDEA 2019.1.3\bin -Dfile.encoding=UTF-8 # Warmup: 3 iterations, 1 s each # Measurement: 5 iterations, 5 s each # Timeout: 10 min per iteration # Threads: 4 threads, will synchronize iterations # Benchmark mode: Average time, time/op # Benchmark: com.wupx.jmh.StringConnectTest.testStringBuilderAdd # Parameters: (length = 100)
该部分为测试的基本信息,比如使用的 Java 路径,预热代码的迭代次数,测量代码的迭代次数,使用的线程数量,测试的统计单位等。
# Warmup Iteration 1: 1083.569 ±(99.9%) 393.884 ns/op # Warmup Iteration 2: 864.685 ±(99.9%) 174.120 ns/op # Warmup Iteration 3: 798.310 ±(99.9%) 121.161 ns/op
该部分为每一次热身中的性能指标,预热测试不会作为最终的统计结果。预热的目的是让 JVM 对被测代码进行足够多的优化,比如,在预热后,被测代码应该得到了充分的 JIT 编译和优化。
Iteration 1: 810.667 ±(99.9%) 51.505 ns/op Iteration 2: 807.861 ±(99.9%) 13.163 ns/op Iteration 3: 851.421 ±(99.9%) 33.564 ns/op Iteration 4: 805.675 ±(99.9%) 33.038 ns/op Iteration 5: 821.020 ±(99.9%) 66.943 ns/op Result "com.wupx.jmh.StringConnectTest.testStringBuilderAdd": 819.329 ±(99.9%) 72.698 ns/op [Average] (min, avg, max) = (805.675, 819.329, 851.421), stdev = 18.879 CI (99.9%): [746.631, 892.027] (assumes normal distribution) Benchmark (length) Mode Cnt Score Error Units StringConnectTest.testStringBuilderAdd 100 avgt 5 819.329 ± 72.698 ns/op
该部分显示测量迭代的情况,每一次迭代都显示了当前的执行速率,即一个操作所花费的时间。在进行 5 次迭代后,进行统计,在本例中,length 为 100 的情况下 testStringBuilderAdd 方法的平均执行花费时间为 819.329 ns,误差为 72.698 ns。
最后的测试结果如下所示:
Benchmark (length) Mode Cnt Score Error Units StringConnectTest.testStringAdd 10 avgt 5 161.496 ± 17.097 ns/op StringConnectTest.testStringAdd 50 avgt 5 1854.657 ± 227.902 ns/op StringConnectTest.testStringAdd 100 avgt 5 6490.062 ± 327.626 ns/op StringConnectTest.testStringBuilderAdd 10 avgt 5 68.769 ± 4.460 ns/op StringConnectTest.testStringBuilderAdd 50 avgt 5 413.021 ± 30.950 ns/op StringConnectTest.testStringBuilderAdd 100 avgt 5 819.329 ± 72.698 ns/op
结果表明,在拼接字符次数越多的情况下,StringBuilder.append() 的性能就更好。
生成 jar 包执行
对于一些小测试,直接用上面的方式写一个 main 函数手动执行就好了。
对于大型的测试,需要测试的时间比较久、线程数比较多,加上测试的服务器需要,一般要放在 Linux 服务器里去执行。
JMH 官方提供了生成 jar 包的方式来执行,我们需要在 maven 里增加一个 plugin,具体配置如下:
<plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>2.4.1</version> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <finalName>jmh-demo</finalName> <transformers> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <mainClass>org.openjdk.jmh.Main</mainClass> </transformer> </transformers> </configuration> </execution> </executions> </plugin> </plugins>
接着执行 maven 的命令生成可执行 jar 包并执行:
mvn clean install java -jar target/jmh-demo.jar StringConnectTest
JMH 基础
为了能够更好地使用 JMH 的各项功能,下面对 JMH 的基本概念进行讲解:
@BenchmarkMode
用来配置 Mode 选项,可用于类或者方法上,这个注解的 value 是一个数组,可以把几种 Mode 集合在一起执行,如:@BenchmarkMode({Mode.SampleTime, Mode.AverageTime}),还可以设置为 Mode.All,即全部执行一遍。
Throughput:整体吞吐量,每秒执行了多少次调用,单位为 ops/time
AverageTime:用的平均时间,每次操作的平均时间,单位为 time/op
SampleTime:随机取样,最后输出取样结果的分布
SingleShotTime:只运行一次,往往同时把 Warmup 次数设为 0,用于测试冷启动时的性能
All:上面的所有模式都执行一次
@State
通过 State 可以指定一个对象的作用范围,JMH 根据 scope 来进行实例化和共享操作。@State 可以被继承使用,如果父类定义了该注解,子类则无需定义。由于 JMH 允许多线程同时执行测试,不同的选项含义如下:
Scope.Benchmark:所有测试线程共享一个实例,测试有状态实例在多线程共享下的性能
Scope.Group:同一个线程在同一个 group 里共享实例
Scope.Thread:默认的 State,每个测试线程分配一个实例
@OutputTimeUnit
为统计结果的时间单位,可用于类或者方法注解
@Warmup
预热所需要配置的一些基本测试参数,可用于类或者方法上。一般前几次进行程序测试的时候都会比较慢,所以要让程序进行几轮预热,保证测试的准确性。参数如下所示:
iterations:预热的次数
time:每次预热的时间
timeUnit:时间的单位,默认秒
batchSize:批处理大小,每次操作调用几次方法
为什么需要预热?
因为 JVM 的 JIT 机制的存在,如果某个函数被调用多次之后,JVM 会尝试将其编译为机器码,从而提高执行速度,所以为了让 benchmark 的结果更加接近真实情况就需要进行预热。
@Measurement
实际调用方法所需要配置的一些基本测试参数,可用于类或者方法上,参数和 @Warmup 相同。
@Threads
每个进程中的测试线程,可用于类或者方法上。
@Fork
进行 fork 的次数,可用于类或者方法上。如果 fork 数是 2 的话,则 JMH 会 fork 出两个进程来进行测试。
@Param
指定某项参数的多种情况,特别适合用来测试一个函数在不同的参数输入的情况下的性能,只能作用在字段上,使用该注解必须定义 @State 注解。
在介绍完常用的注解后,让我们来看下 JMH 有哪些陷阱。
JMH 陷阱
在使用 JMH 的过程中,一定要避免一些陷阱。
比如 JIT 优化中的死码消除,比如以下代码:
@Benchmark public void testStringAdd(Blackhole blackhole) { String a = ""; for (int i = 0; i < length; i++) { a += i; } }
JVM 可能会认为变量 a 从来没有使用过,从而进行优化把整个方法内部代码移除掉,这就会影响测试结果。
JMH 提供了两种方式避免这种问题,一种是将这个变量作为方法返回值 return a,一种是通过 Blackhole 的 consume 来避免 JIT 的优化消除。
其他陷阱还有常量折叠与常量传播、永远不要在测试中写循环、使用 Fork 隔离多个测试方法、方法内联、伪共享与缓存行、分支预测、多线程测试等,感兴趣的可以阅读 https://github.com/lexburner/JMH-samples 了解全部的陷阱。
JMH 插件
大家还可以通过 IDEA 安装 JMH 插件使 JMH 更容易实现基准测试,在 IDEA 中点击 File->Settings...->Plugins,然后搜索 jmh,选择安装 JMH plugin:
JMH plugin
这个插件可以让我们能够以 JUnit 相同的方式使用 JMH,主要功能如下:
自动生成带有 @Benchmark 的方法
像 JUnit 一样,运行单独的 Benchmark 方法
运行类中所有的 Benchmark 方法
比如可以通过右键点击 Generate...,选择操作 Generate JMH benchmark 就可以生成一个带有 @Benchmark 的方法。
还有将光标移动到方法声明并调用 Run 操作就运行一个单独的 Benchmark 方法。
将光标移到类名所在行,右键点击 Run 运行,该类下的所有被 @Benchmark 注解的方法都会被执行。
JMH 可视化
除此以外,如果你想将测试结果以图表的形式可视化,可以试下这些网站:
JMH Visual Chart:http://deepoove.com/jmh-visual-chart/
JMH Visualizer:https://jmh.morethan.io/
比如将上面测试例子结果的 json 文件导入,就可以实现可视化:
到此,关于“性能调优必备利器JMH优点有哪些”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。