本篇内容主要讲解“怎么加速Python列表和字典”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么加速Python列表和字典”吧!
我们先编写一个装饰器函数来计算函数的执行时间,方便测验不同代码的速度:
import functools import time def timeit(func): @functools.wraps(func) def newfunc(*args, **kwargs): startTime = time.time() func(*args, **kwargs) elapsedTime = time.time() - startTime print('function - {}, took {} ms to complete'.format(func.__name__, int(elapsedTime * 1000))) return newfunc
一、避免在列表中重新评估
1. 在循环内
代码:
@timeit def append_inside_loop(limit): nums = [] for num in limit: nums.append(num) append_inside_loop(list(range(1, 9999999)))
在上面的函数中.append每次通过循环重新计算的函数引用。执行后,上述函数所花费的总时间:
o/p - function - append_inside_loop, took 529 ms to complete
2. 在循环外
代码:
@timeit def append_outside_loop(limit): nums = [] append = nums.append for num in limit: append(num) append_outside_loop(list(range(1, 9999999)))
在上面的函数中,我们对nums.append在循环外部估值,并在循环内部使用append为变量。总时间:
o/p - function - append_outside_loop, took 328 ms to complete
如您所见,当我们在for循环外部追加为一个本地变量,这将花费更少的时间,可以将代码加速201 ms。
二、避免在字典中重新求值
1. 在循环内部
代码:
@timeit def inside_evaluation(limit): data = {} for num in limit: data[num] = data.get(num, 0) + 1 inside_evaluation(list(range(1, 9999999)))
上述函数所花费的总时间:
o/p - function - inside_evaluation, took 1400 ms to complete
2. 在循环外
代码:
@timeit def outside_evaluation(limit): data = {} get = data.get for num in limit: data[num] = get(num, 0) + 1 outside_evaluation(list(range(1, 9999999)))
上述函数所花费的总时间:
o/p - function - outside_evaluation, took 1189 ms to complete
如你所见,我们这里的代码速度提高了211毫秒。
到此,相信大家对“怎么加速Python列表和字典”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。